1
|
Jia S, Qi S, Xing Z, Li S, Wang Q, Chen Z. Effects of Different Lengths of Oligo (Ethylene Glycol) Side Chains on the Electrochromic and Photovoltaic Properties of Benzothiadiazole-Based Donor-Acceptor Conjugated Polymers. Molecules 2023; 28:2056. [PMID: 36903301 PMCID: PMC10004708 DOI: 10.3390/molecules28052056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
In recent years, donor-acceptor (D-A)-type conjugated polymers have been widely used in the field of organic solar cells (OSCs) and electrochromism (EC). Considering the poor solubility of D-A conjugated polymers, the solvents used in material processing and related device preparation are mostly toxic halogenated solvents, which have become the biggest obstacle to the future commercial process of the OSC and EC field. Herein, we designed and synthesized three novel D-A conjugated polymers, PBDT1-DTBF, PBDT2-DTBF, and PBDT3-DTBF, by introducing polar oligo (ethylene glycol) (OEG) side chains of different lengths in the donor unit benzodithiophene (BDT) as side chain modification. Studies on solubility, optics, electrochemical, photovoltaic and electrochromic properties are conducted, and the influence of the introduction of OEG side chains on its basic properties is also discussed. Studies on solubility and electrochromic properties show unusual trends that need further research. However, since PBDT-DTBF-class polymers and acceptor IT-4F failed to form proper morphology under the low-boiling point solvent THF solvent processing, the photovoltaic performance of prepared devices is not ideal. However, films with THF as processing solvent showed relatively desirable electrochromic properties and films cast from THF display higher CE than CB as the solvent. Therefore, this class of polymers has application feasibility for green solvent processing in the OSC and EC fields. The research provides an idea for the design of green solvent-processable polymer solar cell materials in the future and a meaningful exploration of the application of green solvents in the field of electrochromism.
Collapse
Affiliation(s)
- Songrui Jia
- Key of High Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shiying Qi
- Key of High Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Zhen Xing
- Key of High Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shiyi Li
- Key of High Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qilin Wang
- Key of High Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zheng Chen
- Key of High Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Liu M, Zhang Z, Xie Y, Guo Z, Feng H, Liu W, Wang H. Titanium nitride as a promising sodium-ion battery anode: interface-confined preparation and electrochemical investigation. Dalton Trans 2022; 51:12855-12865. [PMID: 35972320 DOI: 10.1039/d2dt02074b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The search for new electrode materials for sodium-ion batteries (SIBs), especially for enhancing the specific capacity and cycling stability of anodes, is of great significance for the development of new energy conversion and storage materials. Here, a new type of titanium nitride composite anode (TiN@C) coated with 2D carbon nanosheets was prepared for the first time using a rationally designed topochemical conversion approach of interface-confinement. Subsequently, the electrochemical performance and Na+ storage mechanism of TiN@C as an anode for SIBs was investigated. The quantum-dot-sized TiN anodes exhibited shorter ionic transport pathways, while the 2D ultrathin carbon nanosheets reinforced the structural stability of the composite and provided a high electron transformation rate. As a result, the TiN/C composite anode can deliver a high reversible capacity of 170 mA h g-1 and 149 mA h g-1 after 5000 cycles at a current density of 0.5 A g-1 and 1 A g-1, indicating excellent electrochemical properties. This work provides new opportunities to explore the convenient and controllable preparation of metal nitride anodes for other energy conversion and storage applications.
Collapse
Affiliation(s)
- Ming Liu
- College of Physics and Technology, Guangxi Normal University, Guilin 541004, China.
| | - Zilu Zhang
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yunyun Xie
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Zhiwei Guo
- College of Physics and Technology, Guangxi Normal University, Guilin 541004, China.
| | - Hua Feng
- College of Physics and Technology, Guangxi Normal University, Guilin 541004, China.
| | - Wenyou Liu
- College of Physics and Technology, Guangxi Normal University, Guilin 541004, China.
| | - Hai Wang
- College of Physics and Technology, Guangxi Normal University, Guilin 541004, China. .,College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China.,State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275 China
| |
Collapse
|
3
|
Photoelectrochemical Water Splitting Over Decahedron Shaped BiVO4 Photoanode by Tuning the Experimental Parameters. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Ming S, Zhen S, Zhang H, Han X, Zhang Y, Xu J, Zhao J. Electrochromic polymer with asymmetric substituents – Inhibit aggregation and modify respond speed. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
Nikiforidis G, Wustoni S, Routier C, Hama A, Koklu A, Saleh A, Steiner N, Druet V, Fiumelli H, Inal S. Benchmarking the Performance of Electropolymerized Poly(3,4-ethylenedioxythiophene) Electrodes for Neural Interfacing. Macromol Biosci 2020; 20:e2000215. [PMID: 32820588 DOI: 10.1002/mabi.202000215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/03/2020] [Indexed: 11/11/2022]
Abstract
The development of electronics adept at interfacing with the nervous system is an ever-growing effort, leading to discoveries in fundamental neuroscience applied in clinical setting. Highly capacitive and electrochemically stable electronic materials are paramount for these advances. A systematic study is presented where copolymers based on 3,4-ethylenedioxythiophene (EDOT) and its hydroxyl-terminated counterpart (EDOTOH) are electropolymerized in an aqueous solution in the presence of various counter anions and additives. Amongst the conducting materials developed, the copolymer p(EDOT-ran-EDOTOH) doped with perchlorate in the presence of ethylene glycol shows high specific capacitance (105 F g-1 ), and capacitance retention (85%) over 1000 galvanostatic charge-discharge cycles. A microelectrode array-based on this material is fabricated and primary cortical neurons are cultured therein for several days. The microelectrodes electrically stimulate targeted neuronal networks and record their activity with high signal-to-noise ratio. The stability of charge injection capacity of the material is validated via long-term pulsing experiments. While providing insights on the effect of additives and dopants on the electrochemical performance and operational stability of electropolymerized conducting polymers, this study highlights the importance of high capacitance accompanied with stability to achieve high performance electrodes for biological interfacing.
Collapse
Affiliation(s)
- Georgios Nikiforidis
- Organic Bioelectronics Laboratory, Biological Science and Engineering Division (BESE), King Abdullah University of Science and Engineering (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Shofarul Wustoni
- Organic Bioelectronics Laboratory, Biological Science and Engineering Division (BESE), King Abdullah University of Science and Engineering (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Cyril Routier
- Organic Bioelectronics Laboratory, Biological Science and Engineering Division (BESE), King Abdullah University of Science and Engineering (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Adel Hama
- Organic Bioelectronics Laboratory, Biological Science and Engineering Division (BESE), King Abdullah University of Science and Engineering (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Anil Koklu
- Organic Bioelectronics Laboratory, Biological Science and Engineering Division (BESE), King Abdullah University of Science and Engineering (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Abdulelah Saleh
- Organic Bioelectronics Laboratory, Biological Science and Engineering Division (BESE), King Abdullah University of Science and Engineering (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | | | - Victor Druet
- Organic Bioelectronics Laboratory, Biological Science and Engineering Division (BESE), King Abdullah University of Science and Engineering (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | | | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological Science and Engineering Division (BESE), King Abdullah University of Science and Engineering (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
6
|
Liu X, Cao T, Yao W, Shen L, Xu J, Jiang F, Du Y. A freestanding electrochromic copolymer for multicolor smart window. J Colloid Interface Sci 2020; 570:382-389. [DOI: 10.1016/j.jcis.2020.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 11/29/2022]
|
7
|
Chen Y, Yin Y, Xing X, Fang D, Zhao Y, Zhu Y, Ali MU, Shi Y, Bai J, Wu P, Shen CK, Meng H. The Effect of Oligo(Ethylene Oxide) Side Chains: A Strategy to Improve Contrast and Switching Speed in Electrochromic Polymers. Chemphyschem 2020; 21:321-327. [DOI: 10.1002/cphc.201901047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/28/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Youquan Chen
- School of Advanced MaterialsPeking University Shenzhen Graduate School Shenzhen 518055 China
| | - Yuyang Yin
- School of Advanced MaterialsPeking University Shenzhen Graduate School Shenzhen 518055 China
| | - Xing Xing
- Research & Development Institute of Northwestern Polytechnical University (Shenzhen)Northwestern Polytechnical University Shenzhen 518057 China
| | - Daqi Fang
- School of Advanced MaterialsPeking University Shenzhen Graduate School Shenzhen 518055 China
| | - Yang Zhao
- School of Advanced MaterialsPeking University Shenzhen Graduate School Shenzhen 518055 China
| | - Yanan Zhu
- School of Advanced MaterialsPeking University Shenzhen Graduate School Shenzhen 518055 China
| | - Muhammad Umair Ali
- School of Advanced MaterialsPeking University Shenzhen Graduate School Shenzhen 518055 China
| | - Yuhao Shi
- School of Advanced MaterialsPeking University Shenzhen Graduate School Shenzhen 518055 China
| | - Junwu Bai
- School of Advanced MaterialsPeking University Shenzhen Graduate School Shenzhen 518055 China
| | - Peiheng Wu
- Shenzhen ZSZ Construction Group Co., Ltd Chinese Cha Gong 82 Jingtian Road North Shenzhen China
| | - Clifton Kwang‐Fu Shen
- Guangdong Leputai New Material Technology Co., Ltd Songshan Lake High-tech Industrial Development Zone, Dongguan China
| | - Hong Meng
- School of Advanced MaterialsPeking University Shenzhen Graduate School Shenzhen 518055 China
| |
Collapse
|
8
|
Effect of backbone structure on the thermoelectric performance of indacenodithiophene-based conjugated polymers. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Liu Y, Dai Q, Zhou Y, Li B, Mao X, Gao C, Gao Y, Pan C, Jiang Q, Wu Y, Xie Y, Wang L. High-Performance N-Type Carbon Nanotube Composites: Improved Power Factor by Optimizing the Acridine Scaffold and Tailoring the Side Chains. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29320-29329. [PMID: 31298832 DOI: 10.1021/acsami.9b10023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs)/organic small molecules (OSMs) are promising candidates for application in thermoelectric (TE) modules; however, the development of n-type SWCNT/OSMs with high performance is lagging behind. Only a few structure-activity relationships of OSMs on SWCNT composites have been reported. Recently, we find that the n-type acridone/SWCNT composites display high power factor (PF) values at high temperature but suffer from low PFs at room temperature. Here, the performance of SWCNT composites containing an acridine derivative (AD) as well as its analogues with different counterions (Cl-, SO42- and F-) and lengths of alkyl chains (ADLA1-2 and ADLA4-5) is reported. Among the composites, SWCNT/ADLA4 with no counterions exhibits the highest PF value of 195.2 μW m-1 K-2 at room temperature, which is 4.9 times higher than that of SWCNT/ADTAd (39.8 μW m-1 K-2), indicating that the acridine scaffold and the lengths of alkyl chains contribute to the dramatic changes in the TE performance. In addition, SWCNT/ADLA4 exhibits high PF values at all the temperatures we investigate, which range from 154.7 to 230.7 μW m-1 K-2. Furthermore, a TE device consisting of five pairs of p (the pristine SWCNTs)-n (SWCNT/ADLA4) junctions is assembled, generating a relatively high open-circuit voltage (41.7 mV) and an output power of 1.88 μW at a temperature difference of 74.8 K. Our results suggest that structural modifications might be an effective way to advance the development of TE materials.
Collapse
Affiliation(s)
| | - Qiuzi Dai
- Department of Chemistry , Tsinghua University , Beijing 100084 , PR China
| | | | | | | | | | | | | | - Qinglin Jiang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| | | | | | | |
Collapse
|
10
|
Hart JL, Hantanasirisakul K, Lang AC, Anasori B, Pinto D, Pivak Y, van Omme JT, May SJ, Gogotsi Y, Taheri ML. Control of MXenes' electronic properties through termination and intercalation. Nat Commun 2019; 10:522. [PMID: 30705273 PMCID: PMC6355901 DOI: 10.1038/s41467-018-08169-8] [Citation(s) in RCA: 368] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/10/2018] [Indexed: 11/09/2022] Open
Abstract
MXenes are an emerging family of highly-conductive 2D materials which have demonstrated state-of-the-art performance in electromagnetic interference shielding, chemical sensing, and energy storage. To further improve performance, there is a need to increase MXenes' electronic conductivity. Tailoring the MXene surface chemistry could achieve this goal, as density functional theory predicts that surface terminations strongly influence MXenes' Fermi level density of states and thereby MXenes' electronic conductivity. Here, we directly correlate MXene surface de-functionalization with increased electronic conductivity through in situ vacuum annealing, electrical biasing, and spectroscopic analysis within the transmission electron microscope. Furthermore, we show that intercalation can induce transitions between metallic and semiconductor-like transport (transitions from a positive to negative temperature-dependence of resistance) through inter-flake effects. These findings lay the groundwork for intercalation- and termination-engineered MXenes, which promise improved electronic conductivity and could lead to the realization of semiconducting, magnetic, and topologically insulating MXenes.
Collapse
Affiliation(s)
- James L Hart
- Department of Materials Science & Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Kanit Hantanasirisakul
- Department of Materials Science & Engineering, Drexel University, Philadelphia, PA, 19104, USA
- A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA, 19104, USA
| | - Andrew C Lang
- Department of Materials Science & Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Babak Anasori
- Department of Materials Science & Engineering, Drexel University, Philadelphia, PA, 19104, USA
- A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA, 19104, USA
| | - David Pinto
- Department of Materials Science & Engineering, Drexel University, Philadelphia, PA, 19104, USA
- A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA, 19104, USA
| | - Yevheniy Pivak
- DENSsolutions, Informaticalaan 12, Delft, 2626ZD, The Netherlands
| | - J Tijn van Omme
- DENSsolutions, Informaticalaan 12, Delft, 2626ZD, The Netherlands
| | - Steven J May
- Department of Materials Science & Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Yury Gogotsi
- Department of Materials Science & Engineering, Drexel University, Philadelphia, PA, 19104, USA
- A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA, 19104, USA
| | - Mitra L Taheri
- Department of Materials Science & Engineering, Drexel University, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Novel copolymers based on PEO bridged thiophenes and 3,4-ethylenedioxythiophene: Electrochemical, optical, and electrochromic properties. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.072] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Wan Z, Zeng J, Li H, Liu P, Deng W. Multicolored, Low-Voltage-Driven, Flexible Organic Electrochromic Devices Based on Oligomers. Macromol Rapid Commun 2018; 39:e1700886. [PMID: 29675832 DOI: 10.1002/marc.201700886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/11/2018] [Indexed: 11/07/2022]
Abstract
In this study, a series of organic conjugated oligomers containing 3,4-ethylenedioxythiophene (EDOT) and aromatic groups are synthesized, which are as follows: 2,5-di(methyl benzoate)-3,4-ethylenedioxy-thiophene (1EDOT-2B-COOCH3 ), 5,5'-di(methyl benzoate)-2,2'-bi(3,4-ethylenedioxythiophene) (2EDOT-2B-COOCH3 ), 5,5″-di(methyl benzoate)-2,2':5',2″-ter(3,4-ethylenedioxythiophene) (3EDOT-2B-COOCH3 ), and 5,5″'-di(methyl benzoate)-2,2':5',2″: 5″,2″'-quater(3,4-ethylenedioxythiophene) (4EDOT-2B-COOCH3 ). Using these oligomers as active materials, flexible organic electrochromic devices are fabricated. The device structure is indium tin oxide-PET plastic slide (ITO-PET)/active layer/conducting gel/ITO-PET, and the electrochromic properties of oligomers are investigated. These oligomers exhibit reversible color changes upon electrochemical doping and dedoping. The highest optical contrast is exhibited by 4EDOT-2B-COOCH3 , which is 75.2% at 700 nm.
Collapse
Affiliation(s)
- Zhijun Wan
- State Key Laboratory of Luminescent Materials and Devices, Research Institute of Materials Science, South China University of Technology, Guangzhou, 510640, China
| | - Jinming Zeng
- State Key Laboratory of Luminescent Materials and Devices, Research Institute of Materials Science, South China University of Technology, Guangzhou, 510640, China
| | - Hui Li
- State Key Laboratory of Luminescent Materials and Devices, Research Institute of Materials Science, South China University of Technology, Guangzhou, 510640, China
| | - Ping Liu
- State Key Laboratory of Luminescent Materials and Devices, Research Institute of Materials Science, South China University of Technology, Guangzhou, 510640, China
| | - Wenji Deng
- Department of Applied Physics, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|