1
|
Roddy GPT, Manni LS, Atkin R, Warr GG. 12-Hydroxyoctadecanoic acid forms two kinds of supramolecular gels in nanostructured protic ionic liquids. J Colloid Interface Sci 2025; 691:137384. [PMID: 40132427 DOI: 10.1016/j.jcis.2025.137384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
HYPOTHESIS We postulate that the amphiphilic nanostructure of ionic liquids, consisting of interpenetrating networks of polar and apolar domains, may enable them to support distinct self-assembled organogel-like and hydrogel-like structures. EXPERIMENTS The structures of gels formed by the low molecular weight gelator 12-hydroxystearic acid (12HSA) and its ammonium salts have been investigated from the molecular to the microscale by a combination of powder X-ray diffraction, SAXS/WAXS, FTIR, CD, and optical microscopy, together with rheological characterisation of the gels formed. FINDINGS 12HSA is shown to form long-lived ionogels in ethylammonium and propylammonium nitrate ionic liquids at low concentrations via two distinct mechanisms; supramolecular, hydrogen-bond driven aggregation of the acid and amphiphilic assembly of the conjugate base. 12HSA gel structures were shown to consist of high aspect-ratio twisted crystalline fibrils assembled from H-bonded dimers, similar to organogels, while 12HS salts form an elongated rectangular ribbon of solvophobically-associated lamellar stacks with an opposite twist to the acid form. Partial neutralisation of 12HSA gels with base can generate coexisting mixtures of both types of gel in these ILs.
Collapse
Affiliation(s)
- George P T Roddy
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Livia Salvati Manni
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia; Australian Synchrotron, ANSTO, 800 Blackburn Rd, Clayton, VIC 3168, Australia; School of Chemistry, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Gregory G Warr
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
2
|
Almeida M, Dudzinski D, Amiel C, Guigner JM, Prévost S, Le Coeur C, Cousin F. Aqueous Binary Mixtures of Stearic Acid and Its Hydroxylated Counterpart 12-Hydroxystearic Acid: Cascade of Morphological Transitions at Room Temperature. Molecules 2023; 28:molecules28114336. [PMID: 37298812 DOI: 10.3390/molecules28114336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Here, we describe the behavior of mixtures of stearic acid (SA) and its hydroxylated counterpart 12-hydroxystearic acid (12-HSA) in aqueous mixtures at room temperature as a function of the 12-HSA/SA mole ratio R. The morphologies of the self-assembled aggregates are obtained through a multi-structural approach that combines confocal and cryo-TEM microscopies with small-angle neutron scattering (SANS) and wide-angle X-ray scattering (WAXS) measurements, coupled with rheology measurements. Fatty acids are solubilized by an excess of ethanolamine counterions, so that their heads are negatively charged. A clear trend towards partitioning between the two types of fatty acids is observed, presumably driven by the favorable formation of a H-bond network between hydroxyl OH function on the 12th carbon. For all R, the self-assembled structures are locally lamellar, with bilayers composed of crystallized and strongly interdigitated fatty acids. At high R, multilamellar tubes are formed. The doping via a low amount of SA molecules slightly modifies the dimensions of the tubes and decreases the bilayer rigidity. The solutions have a gel-like behavior. At intermediate R, tubes coexist in solution with helical ribbons. At low R, local partitioning also occurs, and the architecture of the self-assemblies associates the two morphologies of the pure fatty acids systems: they are faceted objects with planar domains enriched in SA molecules, capped with curved domains enriched in 12-HSA molecules. The rigidity of the bilayers is strongly increased, as well their storage modulus. The solutions remain, however, viscous fluids in this regime.
Collapse
Affiliation(s)
- Maëva Almeida
- Institut Chimie et Materiaux Paris Est, Université Paris Est Créteil, CNRS, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA-CNRS UMR 12 CEA Saclay, 91191 Gif sur Yvette, France
| | - Daniel Dudzinski
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA-CNRS UMR 12 CEA Saclay, 91191 Gif sur Yvette, France
| | - Catherine Amiel
- Institut Chimie et Materiaux Paris Est, Université Paris Est Créteil, CNRS, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Jean-Michel Guigner
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)-IRD-MNHN, Sorbonne Université & CNRS, UMR 7590, CEDEX 05, 75252 Paris, France
| | - Sylvain Prévost
- Institut Laue-Langevin-71 Avenue des Martyrs, CS 20156, CEDEX 9, 38042 Grenoble, France
| | - Clémence Le Coeur
- Institut Chimie et Materiaux Paris Est, Université Paris Est Créteil, CNRS, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA-CNRS UMR 12 CEA Saclay, 91191 Gif sur Yvette, France
| | - Fabrice Cousin
- Institut Chimie et Materiaux Paris Est, Université Paris Est Créteil, CNRS, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| |
Collapse
|
3
|
Lai TY, Khabaz F, Cavicchi KA. Influence of solute association on the phase behavior of 12-hydroxystearic acid/ n-alkane solutions. SOFT MATTER 2023; 19:2339-2349. [PMID: 36876897 DOI: 10.1039/d3sm00013c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The phase behavior of 12-hydroxystearic acid (12-HSA) in even-numbered alkanes ranging from octane (C8) to hexatriacontane (C36) was measured by visual observation of liquid + solid to liquid and liquid-liquid to liquid cloud points and liquid + solid to liquid + liquid transitions. In general solid phases were stabilized to low concentration and higher temperature with increasing alkane length. Liquid-liquid immiscibility was observed in larger alkanes starting with octadecane. The liquidus lines of shorter alkanes (octane to hexadecane) showing only liquid to liquid + solid transitions were fit with an attenuated associated solution model based on the Flory-Huggins lattice model assuming that 12-HSA forms a carboxylic acid dimer over all concentrations investigated. The fit results show that 12-HSA forms associated structures with degrees of association ranging from 3.7-4.5 dimers in the neat 12-HSA. At low concentrations, the 12-HSA is dissociated into dimers, however the free energy cost of dissociation stabilizes the solid phase giving a sharp knee at low concentrations. The role of 12-HSA association in its phase behavior and gelation behavior are discussed. More broadly, the importance of solute association in small molecule organogelators and its potential as a molecular design parameter similar to other component thermodynamic parameters, such as melting temperature and heat of fusion, is discussed.
Collapse
Affiliation(s)
- Tzu-Yu Lai
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA.
| | - Fardin Khabaz
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA.
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, OH, 44325, USA
| | - Kevin A Cavicchi
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA.
| |
Collapse
|
4
|
Espinosa-Dzib A, Vyazovkin S. Nanoconfined gelation in systems based on stearic and 12-hydroxystearic acids: A calorimetric study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Van Lommel R, De Borggraeve WM, De Proft F, Alonso M. Computational Tools to Rationalize and Predict the Self-Assembly Behavior of Supramolecular Gels. Gels 2021; 7:87. [PMID: 34287290 PMCID: PMC8293097 DOI: 10.3390/gels7030087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Supramolecular gels form a class of soft materials that has been heavily explored by the chemical community in the past 20 years. While a multitude of experimental techniques has demonstrated its usefulness when characterizing these materials, the potential value of computational techniques has received much less attention. This review aims to provide a complete overview of studies that employ computational tools to obtain a better fundamental understanding of the self-assembly behavior of supramolecular gels or to accelerate their development by means of prediction. As such, we hope to stimulate researchers to consider using computational tools when investigating these intriguing materials. In the concluding remarks, we address future challenges faced by the field and formulate our vision on how computational methods could help overcoming them.
Collapse
Affiliation(s)
- Ruben Van Lommel
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F Leuven Chem & Tech, P.O. Box 2404, 3001 Leuven, Belgium;
- Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium;
| | - Wim M. De Borggraeve
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F Leuven Chem & Tech, P.O. Box 2404, 3001 Leuven, Belgium;
| | - Frank De Proft
- Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium;
| | - Mercedes Alonso
- Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium;
| |
Collapse
|
6
|
Yang HK, Zhang C, He XN, Wang PY. Effects of alkyl chain lengths on 12-hydroxystearic acid derivatives based supramolecular organogels. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126319] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Nouri V, Pontes De Siqueira Moura M, Payre B, De Almeida O, Déjugnat C, Franceschi S, Perez E. How an organogelator can gelate water: gelation transfer from oil to water induced by a nanoemulsion. SOFT MATTER 2020; 16:2371-2378. [PMID: 32064481 DOI: 10.1039/d0sm00128g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A hydrogel can be formed by an organogelator in the presence of a nanoemulsion. It is expected that this is due to a gelation transfer from oil to water. The system started with an oil-in-water nanoemulsion prepared according to a phase inversion temperature (PIT) process. Into this nanoemulsion consisting of Kolliphor® RH40 and Brij® L4 as surfactants, and Miglyol® 812 as oil and water, we introduced the organogelator 12-hydroxyoctadecanoic acid (12-HOA) in the oil phase. After cooling at room temperature, a slow reversible gelation of the water phase occurred with persistence of the nanoemulsion. This thermally reversible system was investigated using various techniques (rheology, turbidimetry, optical and electron microscopies, scattering techniques). Successive stages appeared during the cooling process after the nanoemulsion formation, corresponding to the migration and self-assembly of the organogelator from the oil nanodroplets to the water phase. According to our measurements and the known self-assembly of 12-HOA, a mechanism explaining the formation of the gelled nanoemulsion is proposed.
Collapse
Affiliation(s)
- Vivien Nouri
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France.
| | | | - Bruno Payre
- Centre de Microscopie Electronique Appliquée à la Biologie (CMEAB) Faculté de Médecine Rangueil, 133, Route de Narbonne, 31062 Toulouse, France
| | - Olivier De Almeida
- Institut Clément Ader (ICA), Université de Toulouse, CNRS, IMT Mines Albi, UPS, INSA, ISAE-SUPAERO, Campus Jarlard, CT Cedex 09 81013, Albi, France
| | - Christophe Déjugnat
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France.
| | - Sophie Franceschi
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France.
| | - Emile Perez
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France.
| |
Collapse
|
8
|
Huda MM, Rai N. Probing Early-Stage Aggregation of Low Molecular Weight Gelator in an Organic Solvent. J Phys Chem B 2020; 124:2277-2288. [PMID: 32105082 DOI: 10.1021/acs.jpcb.9b11865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Md Masrul Huda
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State 39762, Mississippi, United States
| | - Neeraj Rai
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State 39762, Mississippi, United States
| |
Collapse
|
9
|
Gordon R, Stober ST, Abrams CF. Counterion Effects on Aggregate Structure of 12-Hydroxystearate Salts in Hexane: A Quantum Mechanical and Molecular Dynamics Simulation Study. J Phys Chem B 2019; 123:534-541. [PMID: 30571113 DOI: 10.1021/acs.jpcb.8b08477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Salts of 12-hydroxystearate are important organogelators and grease thickeners, but a structural rationale for their rheological properties remains elusive. We use quantum mechanical calculations and molecular dynamics (MD) simulations to analyze aggregate structures for (1) ( R)-12-hydroxystearic acid (( R)-12HSA), (2) lithium ( R)-12-hydroxystearate (( R)-Li12HS), and (3) sodium ( R)-12-hydroxystearate (( R)-Na12HS). First, quantum mechanical calculations were used to establish the structure and complexation energies of dimers of acetic acid, lithium acetate, and sodium acetate. The expected acetic acid dimer is predicted, and both the lithium acetate and sodium acetate dimer formed a C2 h-symmetric structure. All dimers were sufficiently stable to allow modeling them as pseudocovalent complexes in all-atom, explicit solvent MD. After microsecond-long MD, all systems produced strong ringlike ordered nuclei. The C2 h lithium salt molecules produced aggregates that had the most efficient packing at the head group and a higher frequency of hydroxyl hydrogen bonding compared to the sodium salt. This ordering propensity explains the high melting temperature of ( R)-Li12HS. Also, the higher frequency of hydrogen bonding leads to fewer solvent-exposed hydrogen bond partners. This explains why lithium is a common counterion in high-temperature and water-resistant greases.
Collapse
Affiliation(s)
- Ryan Gordon
- Department of Chemical and Biological Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Spencer T Stober
- ExxonMobil Research and Engineering , Annandale , New Jersey 08801 , United States
| | - Cameron F Abrams
- Department of Chemical and Biological Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|