1
|
Stefanoni K, Schmitz M, Treuheit J, Kerzig C, Wilhelm R. Bichromophoric Ruthenium Complexes for Photocatalyzed Late-Stage Synthesis of Trifluoromethylated Indolizines. J Org Chem 2025; 90:6491-6503. [PMID: 40323755 PMCID: PMC12090221 DOI: 10.1021/acs.joc.5c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/18/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Indolizines are a promising class of biologically active compounds. However, photocatalytic methods for their selective derivatization are scarce in the literature. Herein, a mild, simple, and chemoselective protocol for the synthesis of 3-(trifluoromethyl)indolizine has been developed. The desired products were obtained in good to excellent yields and can be easily obtained on a gram scale. By tuning the redox properties of a Ru-based photocatalyst, it is possible to achieve competitive yields and further apply the optimized conditions to a broad variety of substrates. This method tolerates many functional groups and, therefore, can be used for late-stage functionalization. Our combined theoretical and spectroscopic findings revealed that the superior dyad-like ruthenium catalyst developed in this study has a completely different electronic nature of both key species that are crucial for efficient photoredox catalysis compared to commonly used homoleptic ruthenium complexes.
Collapse
Affiliation(s)
- Kevin
Klaus Stefanoni
- Institute
of Organic Chemistry, Clausthal University
of Technology, Leibnizstr. 6, 38678 Clausthal-Zellerfeld, Germany
| | - Matthias Schmitz
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Johanna Treuheit
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Christoph Kerzig
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - René Wilhelm
- Institute
of Organic Chemistry, Clausthal University
of Technology, Leibnizstr. 6, 38678 Clausthal-Zellerfeld, Germany
| |
Collapse
|
2
|
Sheth S, Gotico P, Herrero C, Quaranta A, Aukauloo A, Leibl W. Proton Domino Reactions at an Imidazole Relay Control the Oxidation of a Tyr Z-His 190 Artificial Mimic of Photosystem II. Chemistry 2024; 30:e202400862. [PMID: 38676548 DOI: 10.1002/chem.202400862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
A close mimic of P680 and the TyrosineZ-Histidine190 pair in photosystem II (PS II) has been synthesized using a ruthenium chromophore and imidazole-phenol ligands. The intramolecular oxidation of the ligands by the photoproduced Ru(III) species is characterized by a small driving force, very similar to PS II where the complexity of kinetics was attributed to the reversibility of electron transfer steps. Laser flash photolysis revealed biphasic kinetics for ligand oxidation. The fast phase (τ<50 ns) corresponds to partial oxidation of the imidazole-phenol ligand, proton transfer within the hydrogen bond, and formation of a neutral phenoxyl radical. The slow phase (5-9 μs) corresponds to full oxidation of the ligand which is kinetically controlled by deprotonation of the distant 1-nitrogen of the imidazolium. These results show that imidazole with its two protonatable sites plays a special role as a proton relay in a 'proton domino' reaction.
Collapse
Affiliation(s)
- Sujitraj Sheth
- CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), Université Paris Saclay, 91198, Gif-sur-Yvette, France
- Current affiliation , National Key Laboratory of Green Pesticide, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Philipp Gotico
- CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), Université Paris Saclay, 91198, Gif-sur-Yvette, France
| | - Christian Herrero
- CNRS, Institut de Chimie Moléculaire et Des Matériaux d'Orsay (ICMMO), Université Paris Saclay, 91405, Orsay, France
| | - Annamaria Quaranta
- CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), Université Paris Saclay, 91198, Gif-sur-Yvette, France
| | - Ally Aukauloo
- CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), Université Paris Saclay, 91198, Gif-sur-Yvette, France
- CNRS, Institut de Chimie Moléculaire et Des Matériaux d'Orsay (ICMMO), Université Paris Saclay, 91405, Orsay, France
| | - Winfried Leibl
- CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), Université Paris Saclay, 91198, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Pugliese R, Montuori M, Gelain F. Bioinspired photo-crosslinkable self-assembling peptides with pH-switchable "on-off" luminescence. NANOSCALE ADVANCES 2022; 4:447-456. [PMID: 36132689 PMCID: PMC9418485 DOI: 10.1039/d1na00688f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/19/2021] [Indexed: 06/16/2023]
Abstract
Significant progress has been made in peptide self-assembly over the past two decades; however, the in situ cross-linking of self-assembling peptides yielding better performing nanomaterials is still in its infancy. Indeed, self-assembling peptides (SAPs), relying only on non-covalent interactions, are mechanically unstable and susceptible to solvent erosion, greatly hindering their practical application. Herein, drawing inspiration from the biological functions of tyrosine, we present a photo-cross-linking approach for the in situ cross-linking of a tyrosine-containing LDLK12 SAP. This method is based on the ruthenium-complex-catalyzed conversion of tyrosine to dityrosine upon light irradiation. We observed a stable formation of dityrosine cross-linking starting from 5 minutes, with a maximum peak after 1 hour of UV irradiation. Furthermore, the presence of a ruthenium complex among the assembled peptide bundles bestows unusual fluorescence intensity stability up to as high as 42 °C, compared to the bare ruthenium complex. Also, due to a direct deprotonation-protonation process between the ruthenium complex and SAP molecules, the fluorescence of the photo-cross-linked SAP is capable of exhibiting "off-on-off-on" luminescence switchable from acid to basic pH. Lastly, we showed that the photo-cross-linked hydrogel exhibited enhanced mechanical stability with a storage modulus of ∼26 kPa, due to the formation of a densely entangled fibrous network of SAP molecules through dityrosine linkages. As such, this ruthenium-mediated photo-cross-linked SAP hydrogel could be useful in the design of novel tyrosine containing SAP materials with intriguing potential for biomedical imaging, pH sensing, photonics, soft electronics, and bioprinting.
Collapse
Affiliation(s)
- Raffaele Pugliese
- Tissue Engineering Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies-ISBReMIT, Fondazione IRCCS Casa Sollievo della Sofferenza 71013 San Giovanni Rotondo FG Italy
- NeMO Lab, ASST Grande Ospedale Metropolitano Niguarda 20162 Milan Italy
| | - Monica Montuori
- Biotechnology and Biosciences Department, University of Milano-Bicocca 20162 Milan Italy
| | - Fabrizio Gelain
- Tissue Engineering Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies-ISBReMIT, Fondazione IRCCS Casa Sollievo della Sofferenza 71013 San Giovanni Rotondo FG Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda 20162 Milan Italy
| |
Collapse
|
4
|
Chen L, Fournier JA. Probing Hydrogen-Bonding Interactions within Phenol-Benzimidazole Proton-Coupled Electron Transfer Model Complexes with Cryogenic Ion Vibrational Spectroscopy. J Phys Chem A 2021; 125:9288-9297. [PMID: 34652915 DOI: 10.1021/acs.jpca.1c05879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydrogen-bonding interactions within a series of phenol-benzimidazole model proton-coupled electron transfer (PCET) dyad complexes are characterized using cryogenic ion vibrational spectroscopy. A highly red-shifted and surprisingly broad (>1000 cm-1) transition is observed in one of the models and assigned to the phenolic OH stretch strongly H-bonded to the N(3) benzimidazole atom. The breadth is attributed to a combination of anharmonic Fermi-resonance coupling between the OH stretch and background doorway states involving OH bending modes and strong coupling of the OH stretch frequency to structural deformations along the proton-transfer coordinate accessible at the vibrational zero-point level. The other models show unexpected protonation of the benzimidazole group upon electrospray ionization instead of at more basic remote amine/amide groups. This leads to the formation of HO-+HN(3) H-bond motifs that are much weaker than the OH-N(3) H-bond arrangement. H-bonding between the N(1)H+ benzimidazole group and the carbonyl on the tyrosine backbone is the stronger and preferred interaction in these complexes. The results show that conjugation effects, secondary H-bond interactions, and H-bond soft modes strongly influence the OH-N(3) interaction and highlight the importance of the direct monitoring of proton stretch transitions in characterizing the proton-transfer reaction coordinate in PCET systems.
Collapse
Affiliation(s)
- Liangyi Chen
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Joseph A Fournier
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
5
|
Wang YH, Mondal B, Stahl SS. Molecular Cobalt Catalysts for O2 Reduction to H2O2: Benchmarking Catalyst Performance via Rate–Overpotential Correlations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02197] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu-Heng Wang
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Biswajit Mondal
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
6
|
Li Y, Wei Y, Zhang W. Oxidation behavior of N-hydroxyphthalimide (NHPI) and its electrocatalytic ability toward benzyl alcohol: Proton acceptor effect. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Ju M, Cho OH, Lee J, Namgung SD, Song MK, Balamurugan M, Kwon JY, Nam KT. Quantitative analysis of the coupling between proton and electron transport in peptide/manganese oxide hybrid films. Phys Chem Chem Phys 2020; 22:7537-7545. [DOI: 10.1039/c9cp05581a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel platform is proposed to quantify the coupling phenomenon between electrons and protons in tyrosine-rich peptide/manganese oxide hybrid films at room temperature.
Collapse
Affiliation(s)
- Misong Ju
- Department of Materials Science and Engineering
- Seoul National University
- Seoul
- South Korea
| | - Ouk Hyun Cho
- Department of Materials Science and Engineering
- Seoul National University
- Seoul
- South Korea
| | - Jaehun Lee
- Department of Materials Science and Engineering
- Seoul National University
- Seoul
- South Korea
| | - Seok Daniel Namgung
- School of Integrated Technology
- Yonsei University
- Incheon
- South Korea
- Yonsei Institute of Convergence Technology
| | - Min-Kyu Song
- School of Integrated Technology
- Yonsei University
- Incheon
- South Korea
- Yonsei Institute of Convergence Technology
| | - Mani Balamurugan
- Department of Materials Science and Engineering
- Seoul National University
- Seoul
- South Korea
| | - Jang-Yeon Kwon
- School of Integrated Technology
- Yonsei University
- Incheon
- South Korea
- Yonsei Institute of Convergence Technology
| | - Ki Tae Nam
- Department of Materials Science and Engineering
- Seoul National University
- Seoul
- South Korea
| |
Collapse
|
8
|
Oldacre AN, Young ER. Electrochemical proton-coupled electron transfer of an anthracene-based azo dye. RSC Adv 2020; 10:14804-14811. [PMID: 35497176 PMCID: PMC9052096 DOI: 10.1039/d0ra01643h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/02/2020] [Indexed: 11/21/2022] Open
Abstract
Herein, we report the thermodynamics, kinetics, and mechanism for electrochemical proton-coupled electron transfer involving the anthracene-based azo dye azo-OMe.
Collapse
Affiliation(s)
- Amanda N. Oldacre
- Department of Chemistry
- St. Lawrence University
- New York
- USA
- Department of Chemistry
| | | |
Collapse
|
9
|
Yee EF, Dzikovski B, Crane BR. Tuning Radical Relay Residues by Proton Management Rescues Protein Electron Hopping. J Am Chem Soc 2019; 141:17571-17587. [PMID: 31603693 DOI: 10.1021/jacs.9b05715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Transient tyrosine and tryptophan radicals play key roles in the electron transfer (ET) reactions of photosystem (PS) II, ribonucleotide reductase (RNR), photolyase, and many other proteins. However, Tyr and Trp are not functionally interchangeable, and the factors controlling their reactivity are often unclear. Cytochrome c peroxidase (CcP) employs a Trp191•+ radical to oxidize reduced cytochrome c (Cc). Although a Tyr191 replacement also forms a stable radical, it does not support rapid ET from Cc. Here we probe the redox properties of CcP Y191 by non-natural amino acid substitution, altering the ET driving force and manipulating the protic environment of Y191. Higher potential fluorotyrosine residues increase ET rates marginally, but only addition of a hydrogen bond donor to Tyr191• (via Leu232His or Glu) substantially alters activity by increasing the ET rate by nearly 30-fold. ESR and ESEEM spectroscopies, crystallography, and pH-dependent ET kinetics provide strong evidence for hydrogen bond formation to Y191• by His232/Glu232. Rate measurements and rapid freeze quench ESR spectroscopy further reveal differences in radical propagation and Cc oxidation that support an increased Y191• formal potential of ∼200 mV in the presence of E232. Hence, Y191 inactivity results from a potential drop owing to Y191•+ deprotonation. Incorporation of a well-positioned base to accept and donate back a hydrogen bond upshifts the Tyr• potential into a range where it can effectively oxidize Cc. These findings have implications for the YZ/YD radicals of PS II, hole-hopping in RNR and cryptochrome, and engineering proteins for long-range ET reactions.
Collapse
Affiliation(s)
- Estella F Yee
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Boris Dzikovski
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States.,National Biomedical Center for Advanced ESR Technologies (ACERT) , Cornell University , Ithaca , New York 14850 , United States
| | - Brian R Crane
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
10
|
Goldsmith ZK, Soudackov AV, Hammes-Schiffer S. Theoretical analysis of the inverted region in photoinduced proton-coupled electron transfer. Faraday Discuss 2019; 216:363-378. [PMID: 31017599 PMCID: PMC6620152 DOI: 10.1039/c8fd00240a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Photoinduced proton-coupled electron transfer (PCET) plays a key role in a wide range of energy conversion processes, and understanding how to design systems to control the PCET rate constant is a significant challenge. Herein a theoretical formulation of PCET is utilized to identify the conditions under which photoinduced PCET may exhibit inverted region behavior. In the inverted region, the rate constant decreases as the driving force increases even though the reaction becomes more thermodynamically favorable. Photoinduced PCET will exhibit inverted region behavior when the following criteria are satisfied: (1) the overlap integrals corresponding to the ground reactant and the excited product proton vibrational wavefunctions become negligible for a low enough product vibronic state and (2) the reaction free energies associated with the lower excited product proton vibrational wavefunctions contributing significantly to the rate constant are negative with magnitudes greater than the reorganization energy. These criteria are typically not satisfied by harmonic or Morse potentials but are satisfied by more realistic asymmetric double well potentials because the proton vibrational states above the barrier correspond to more delocalized proton vibrational wavefunctions with nodal structures leading to destructive interference effects. Thus, this theoretical analysis predicts that inverted region behavior could be observed for systems with asymmetric double well potentials characteristic of hydrogen-bonded systems and that the hydrogen/deuterium kinetic isotope effect will approach unity and could even become inverse in this region due to the oscillatory nature of the highly excited vibrational wavefunctions. These insights may help guide the design of more effective energy conversion devices.
Collapse
Affiliation(s)
- Zachary K Goldsmith
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA.
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA.
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA.
| |
Collapse
|
11
|
Saura P, Frey DM, Gamiz-Hernandez AP, Kaila VRI. Electric field modulated redox-driven protonation and hydration energetics in energy converting enzymes. Chem Commun (Camb) 2019; 55:6078-6081. [PMID: 31066378 PMCID: PMC6932871 DOI: 10.1039/c9cc01135h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Biological energy conversion is catalysed by proton-coupled electron transfer (PCET) reactions that form the chemical basis of respiratory and photosynthetic enzymes. Despite recent advances in structural, biophysical, and computational experiments, the mechanistic principles of these reactions still remain elusive. Based on common functional features observed in redox enzymes, we study here generic mechanistic models for water-mediated long-range PCET reactions. We show how a redox reaction within a buried protein environment creates an electric field that induces hydration changes between the proton acceptor and donor groups, and in turn, lowers the reaction barrier and increases the thermodynamic driving forces for the water-mediated PCET process. We predict linear free energy relationships, and discuss the proposed mechanism in context of PCET in cytochrome c oxidase.
Collapse
Affiliation(s)
- Patricia Saura
- Center for Integrated Protein Science Munich (CIPSM), Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany.
| | | | | | | |
Collapse
|
12
|
Pannwitz A, Wenger OS. Proton-coupled multi-electron transfer and its relevance for artificial photosynthesis and photoredox catalysis. Chem Commun (Camb) 2019; 55:4004-4014. [DOI: 10.1039/c9cc00821g] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Photoinduced PCET meets catalysis, and the accumulation of multiple redox equivalents is of key importance.
Collapse
Affiliation(s)
- Andrea Pannwitz
- Department of Chemistry
- University of Basel
- 4056 Basel
- Switzerland
| | | |
Collapse
|
13
|
Pannwitz A, Wenger OS. Recent advances in bioinspired proton-coupled electron transfer. Dalton Trans 2019; 48:5861-5868. [DOI: 10.1039/c8dt04373f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Fundamental aspects of PCET continue to attract attention. Understanding this reaction type is desirable for small-molecule activation and solar energy conversion.
Collapse
Affiliation(s)
- Andrea Pannwitz
- Department of Chemistry
- University of Basel
- 4056 Basel
- Switzerland
| | | |
Collapse
|
14
|
Mathew R, Kayal S, Yapamanu AL. Excited state structural dynamics of 4-cyano-4′-hydroxystilbene: deciphering the signatures of proton-coupled electron transfer using ultrafast Raman loss spectroscopy. Phys Chem Chem Phys 2019; 21:22409-22419. [DOI: 10.1039/c9cp02923k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photo-initiated proton-coupled electron transfer process in the 4-cyano-4′-hydroxystilbene–tert-butylamine adduct strongly affects the excited-state structural dynamics of CHSB.
Collapse
Affiliation(s)
- Reshma Mathew
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- Thiruvananthapuram 695551
- India
| | - Surajit Kayal
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | | |
Collapse
|
15
|
Usami K, Yamaguchi E, Tada N, Itoh A. Visible-Light-Mediated Iminyl Radical Generation from Benzyl Oxime Ether: Synthesis of Pyrroline via Hydroimination Cyclization. Org Lett 2018; 20:5714-5717. [DOI: 10.1021/acs.orglett.8b02429] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kaoru Usami
- Gifu Pharmaceutical University 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Eiji Yamaguchi
- Gifu Pharmaceutical University 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Norihiro Tada
- Gifu Pharmaceutical University 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Akichika Itoh
- Gifu Pharmaceutical University 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
16
|
Meng K, Medina-Ramos J, Yibeltal-Ashenafi E, Alvarez JC. Interplay of proton and electron transfer to determine concerted behavior in the proton-coupled electron transfer of glutathione oxidation. Phys Chem Chem Phys 2018; 20:17666-17675. [PMID: 29932186 DOI: 10.1039/c8cp01415a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glutathione (GSH), whose thiol group dictates its redox chemistry, is oxidized to the thiyl radical (GS˙), which rapidly dimerizes to GSSG. Previously, we found that the oxidation rate of GSH by IrCl62- depends on the base (B) concentration and the pKa of its conjugate acid BH+, so that collateral to a stepwise mechanism, the concerted pathway GSH + IrCl62- + B = GS˙ + IrCl63- + BH+ was proposed as the rate determining step. Herein, this investigation is extended to include oxidant-base pairs that render exothermic and endothermic conditions of ΔG°' for electron transfer (ET) and proton transfer (PT). Experiments were conducted by the reaction of GSH with an electrogenerated oxidant M+ and using digital simulations to infer the mechanism. Data analysis shows that despite parallel mechanisms, the concerted one seems to predominate for the oxidant-base pair that renders the most isoenergetic coupled state, whereby a PT with is capable of producing an ET with , as a result of the Nernstian shift of with pKa. In contrast, the stepwise PT-ET appears to dominate when GS- grows in stability as becomes more negative. Understanding the interplay between ET and PT will help in the design of catalysts for energy harvesting processes that rely on proton-coupled electron transfer.
Collapse
Affiliation(s)
- Kejie Meng
- Chemistry Department, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | | | | | | |
Collapse
|
17
|
Kurtz DA, Brereton KR, Ruoff KP, Tang HM, Felton GAN, Miller AJM, Dempsey JL. Bathochromic Shifts in Rhenium Carbonyl Dyes Induced through Destabilization of Occupied Orbitals. Inorg Chem 2018; 57:5389-5399. [DOI: 10.1021/acs.inorgchem.8b00360] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Daniel A. Kurtz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Kelsey R. Brereton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Kevin P. Ruoff
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Hui Min Tang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Greg A. N. Felton
- Department of Chemistry, Eckerd College, St. Petersburg, Florida 33711, United States
| | - Alexander J. M. Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Jillian L. Dempsey
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|