1
|
Asakura T, Ogawa T, Naito A, Williamson MP. Chain-folded lamellar structure and dynamics of the crystalline fraction of Bombyx mori silk fibroin and of (Ala-Gly-Ser-Gly-Ala-Gly) n model peptides. Int J Biol Macromol 2020; 164:3974-3983. [PMID: 32882279 DOI: 10.1016/j.ijbiomac.2020.08.220] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/08/2023]
Abstract
Solid-state NMR is a powerful analytical technique to determine the composite structure of Bombyx mori silk fibroin (SF). In our previous paper, we proposed a lamellar structure for Ala-Gly copolypeptides as a model of the crystalline fraction in Silk II. In this paper, the structure and dynamics of the crystalline fraction and of a better mimic of the crystalline fraction, (Ala-Gly-Ser-Gly-Ala-Gly)n (n = 2-5, 8), and 13C selectively labeled [3-13C]Ala-(AGSGAG)5 in Silk II forms, were studied using structural and dynamical analyses of the Ala Cβ peaks in 13C cross polarization/ magic angle spinning NMR and 13C solid-state spin-lattice relaxation time (T1) measurements, respectively. Like Ala-Gly copolypeptides, these materials have lamellar structures with two kinds of Ala residues in β-sheet, A and B, plus one distorted β-turn, t, formed by repetitive folding using β-turns every eighth amino acid in an antipolar arrangement. However, because of the presence of Ser residues at every sixth residue in (AGSGAG)n, the T1 values and mobilities of B decreased significantly. We conclude that the Ser hydroxyls hydrogen bond to adjacent lamellar layers and fix them together in a similar way to Velcro®.
Collapse
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan.
| | - Tatsuya Ogawa
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Akira Naito
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Michael P Williamson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
2
|
Asakura T, Aoki A, Komatsu K, Ito C, Suzuki I, Naito A, Kaji H. Lamellar Structure in Alanine-Glycine Copolypeptides Studied by Solid-State NMR Spectroscopy: A Model for the Crystalline Domain of Bombyx mori Silk Fibroin in Silk II Form. Biomacromolecules 2020; 21:3102-3111. [PMID: 32603138 DOI: 10.1021/acs.biomac.0c00486] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Bombyx mori silk fibroin (SF) fibers with excellent mechanical properties have attracted widespread attention as new biomaterials. However, the structural details are still not conclusive. Here, we propose a lamellar structure for the crystalline domain of the SF fiber based on structural analyses of the Ala Cβ peaks in the 13C cross-polarization/magic angle spinning NMR spectra of (Ala-Gly)m (m = 9, 12, 15, and 25) and 13C selectively labeled (Ala-Gly)15 model peptides. Namely, three Ala Cβ peaks with relative intensities of 1:2:1 obtained by deconvolution were assigned to two kinds of β-sheet and a β-turn, which are interpreted as a lamellar structure formed by repetitive folding using β-turns every eighth amino acid, for which the basic structure is (Ala-Gly)4 in an antipolar arrangement. The dynamics and intermolecular arrangement were further studied using 13C solid-state spin-lattice relaxation time observations and the rotational echo double resonance experiments, respectively.
Collapse
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Akihiro Aoki
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Kohei Komatsu
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Chie Ito
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Ikue Suzuki
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Akira Naito
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Hironori Kaji
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
3
|
Asakura T, Okonogi M, Naito A. Toward Understanding the Silk Fiber Structure: 13C Solid-State NMR Studies of the Packing Structures of Alanine Oligomers before and after Trifluoroacetic Acid Treatment. J Phys Chem B 2019; 123:6716-6727. [PMID: 31304756 DOI: 10.1021/acs.jpcb.9b04565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polyalanine (poly-A) sequences with tightly packed antiparallel β sheet (AP-β) structures are frequently observed in silk fibers and serve as a key contributor to the exceptionally high-fiber tensile strength. In general, the poly-A sequence embedded in the amorphous glycine-rich regions has different lengths depending on the fiber type from spiders or wild silkworms. In this paper, the packing structures of AP-β alanine oligomers with different lengths were studied using 13C solid-state NMR as a model of the poly-A sequences. These included alanine oligomers with and without the protection groups (i.e., 9-fluorenylmethoxycarbonyl and polyethylene glycol groups at the N- and C-terminals, respectively). The fractions of the packing structures as well as the conformations were determined by deconvolution analyses of the methyl NMR peaks. Trifluoroacetic acid was used to promote the staggered packing structures, and the line shapes changed significantly for oligomers without the protected groups but only slightly for oligomers with the protected groups. Through NMR analysis of the 3-13C singly labeled alanine heptamer and refined crystal structure of the staggered packing units, a possible mechanism of the staggered packing formation is proposed for the AP-β alanine heptamer.
Collapse
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology , Tokyo University of Agriculture and Technology , Koganei , Tokyo 184-8588 , Japan
| | - Michi Okonogi
- Department of Biotechnology , Tokyo University of Agriculture and Technology , Koganei , Tokyo 184-8588 , Japan
| | - Akira Naito
- Department of Biotechnology , Tokyo University of Agriculture and Technology , Koganei , Tokyo 184-8588 , Japan
| |
Collapse
|
4
|
Asakura T, Tasei Y, Matsuda H, Naito A. Dynamics of Alanine Methyl Groups in Alanine Oligopeptides and Spider Dragline Silks with Different Packing Structures As Studied by 13C Solid-State NMR Relaxation. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Yugo Tasei
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Hironori Matsuda
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Akira Naito
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
5
|
Naito A, Tasei Y, Nishimura A, Asakura T. Unusual Dynamics of Alanine Residues in Polyalanine Regions with Staggered Packing Structure of Samia cynthia ricini Silk Fiber in Dry and Hydrated States Studied by 13C Solid-State NMR and Molecular Dynamics Simulation. J Phys Chem B 2018; 122:6511-6520. [DOI: 10.1021/acs.jpcb.8b03509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Akira Naito
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Yugo Tasei
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Akio Nishimura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
6
|
Asakura T, Tasei Y, Aoki A, Nishimura A. Mixture of Rectangular and Staggered Packing Arrangements of Polyalanine Region in Spider Dragline Silk in Dry and Hydrated States As Revealed by 13C NMR and X-ray Diffraction. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02627] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Yugo Tasei
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Akihiro Aoki
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Akio Nishimura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|