1
|
Matsuzaka Y, Yashiro R. Therapeutic Application and Structural Features of Adeno-Associated Virus Vector. Curr Issues Mol Biol 2024; 46:8464-8498. [PMID: 39194716 DOI: 10.3390/cimb46080499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
Adeno-associated virus (AAV) is characterized by non-pathogenicity, long-term infection, and broad tropism and is actively developed as a vector virus for gene therapy products. AAV is classified into more than 100 serotypes based on differences in the amino acid sequence of the capsid protein. Endocytosis involves the uptake of viral particles by AAV and accessory receptors during AAV infection. After entry into the cell, they are transported to the nucleus through the nuclear pore complex. AAVs mainly use proteoglycans as receptors to enter cells, but the types of sugar chains in proteoglycans that have binding ability are different. Therefore, it is necessary to properly evaluate the primary structure of receptor proteins, such as amino acid sequences and post-translational modifications, including glycosylation, and the higher-order structure of proteins, such as the folding of the entire capsid structure and the three-dimensional (3D) structure of functional domains, to ensure the efficacy and safety of biopharmaceuticals. To further enhance safety, it is necessary to further improve the efficiency of gene transfer into target cells, reduce the amount of vector administered, and prevent infection of non-target cells.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
2
|
Sala D, Del Alamo D, Mchaourab HS, Meiler J. Modeling of protein conformational changes with Rosetta guided by limited experimental data. Structure 2022; 30:1157-1168.e3. [PMID: 35597243 PMCID: PMC9357069 DOI: 10.1016/j.str.2022.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022]
Abstract
Conformational changes are an essential component of functional cycles of many proteins, but their characterization often requires an integrative structural biology approach. Here, we introduce and benchmark ConfChangeMover (CCM), a new method built into the widely used macromolecular modeling suite Rosetta that is tailored to model conformational changes in proteins using sparse experimental data. CCM can rotate and translate secondary structural elements and modify their backbone dihedral angles in regions of interest. We benchmarked CCM on soluble and membrane proteins with simulated Cα-Cα distance restraints and sparse experimental double electron-electron resonance (DEER) restraints, respectively. In both benchmarks, CCM outperformed state-of-the-art Rosetta methods, showing that it can model a diverse array of conformational changes. In addition, the Rosetta framework allows a wide variety of experimental data to be integrated with CCM, thus extending its capability beyond DEER restraints. This method will contribute to the biophysical characterization of protein dynamics.
Collapse
Affiliation(s)
- Davide Sala
- Institute for Drug Discovery, Leipzig University, Leipzig, Saxony 04103, Germany
| | - Diego Del Alamo
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235, USA
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235, USA
| | - Jens Meiler
- Institute for Drug Discovery, Leipzig University, Leipzig, Saxony 04103, Germany; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
3
|
Dynamic rotation featured translocations of human serum albumin with a conical glass nanopore. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Shamsi Z, Chan M, Shukla D. TLmutation: Predicting the Effects of Mutations Using Transfer Learning. J Phys Chem B 2020; 124:3845-3854. [PMID: 32308006 DOI: 10.1021/acs.jpcb.0c00197] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A reccurring challenge in bioinformatics is predicting the phenotypic consequence of amino acid variation in proteins. With the recent advancements in sequencing techniques, sufficient genomic data has become available to train models that predict the evolutionary statistical energies, but there is still inadequate experimental data to directly predict functional effects. One approach to overcome this data scarcity is to apply transfer learning and train more models with available data sets. In this study, we propose a set of transfer learning algorithms we call TLmutation, which implements a supervised transfer learning algorithm that transfers knowledge from survival data of a protein to a particular function of that protein. This is followed by an unsupervised transfer learning algorithm that extends the knowledge to a homologous protein. We explore the application of our algorithms in three cases. First, we test the supervised transfer on 17 previously published deep mutagenesis data sets to complete and refine missing data points. We further investigate these data sets to identify which mutations build better predictors of variant functions. In the second case, we apply the algorithm to predict higher-order mutations solely from single point mutagenesis data. Finally, we perform the unsupervised transfer learning algorithm to predict mutational effects of homologous proteins from experimental data sets. These algorithms are generalized to transfer knowledge between Markov random field models. We show the benefit of our transfer learning algorithms to utilize informative deep mutational data and provide new insights into protein variant functions. As these algorithms are generalized to transfer knowledge between Markov random field models, we expect these algorithms to be applicable to other disciplines.
Collapse
Affiliation(s)
- Zahra Shamsi
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Matthew Chan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Feng J, Shukla D. FingerprintContacts: Predicting Alternative Conformations of Proteins from Coevolution. J Phys Chem B 2020; 124:3605-3615. [PMID: 32283936 DOI: 10.1021/acs.jpcb.9b11869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins are dynamic molecules which perform diverse molecular functions by adopting different three-dimensional structures. Recent progress in residue-residue contacts prediction opens up new avenues for the de novo protein structure prediction from sequence information. However, it is still difficult to predict more than one conformation from residue-residue contacts alone. This is due to the inability to deconvolve the complex signals of residue-residue contacts, i.e., spatial contacts relevant for protein folding, conformational diversity, and ligand binding. Here, we introduce a machine learning based method, called FingerprintContacts, for extending the capabilities of residue-residue contacts. This algorithm leverages the features of residue-residue contacts, that is, (1) a single conformation outperforms the others in the structural prediction using all the top ranking residue-residue contacts as structural constraints and (2) conformation specific contacts rank lower and constitute a small fraction of residue-residue contacts. We demonstrate the capabilities of FingerprintContacts on eight ligand binding proteins with varying conformational motions. Furthermore, FingerprintContacts identifies small clusters of residue-residue contacts which are preferentially located in the dynamically fluctuating regions. With the rapid growth in protein sequence information, we expect FingerprintContacts to be a powerful first step in structural understanding of protein functional mechanisms.
Collapse
|
6
|
Liang Z, Verkhivker GM, Hu G. Integration of network models and evolutionary analysis into high-throughput modeling of protein dynamics and allosteric regulation: theory, tools and applications. Brief Bioinform 2019; 21:815-835. [DOI: 10.1093/bib/bbz029] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/04/2019] [Accepted: 02/21/2019] [Indexed: 12/24/2022] Open
Abstract
Abstract
Proteins are dynamical entities that undergo a plethora of conformational changes, accomplishing their biological functions. Molecular dynamics simulation and normal mode analysis methods have become the gold standard for studying protein dynamics, analyzing molecular mechanism and allosteric regulation of biological systems. The enormous amount of the ensemble-based experimental and computational data on protein structure and dynamics has presented a major challenge for the high-throughput modeling of protein regulation and molecular mechanisms. In parallel, bioinformatics and systems biology approaches including genomic analysis, coevolution and network-based modeling have provided an array of powerful tools that complemented and enriched biophysical insights by enabling high-throughput analysis of biological data and dissection of global molecular signatures underlying mechanisms of protein function and interactions in the cellular environment. These developments have provided a powerful interdisciplinary framework for quantifying the relationships between protein dynamics and allosteric regulation, allowing for high-throughput modeling and engineering of molecular mechanisms. Here, we review fundamental advances in protein dynamics, network theory and coevolutionary analysis that have provided foundation for rapidly growing computational tools for modeling of allosteric regulation. We discuss recent developments in these interdisciplinary areas bridging computational biophysics and network biology, focusing on promising applications in allosteric regulations, including the investigation of allosteric communication pathways, protein–DNA/RNA interactions and disease mutations in genomic medicine. We conclude by formulating and discussing future directions and potential challenges facing quantitative computational investigations of allosteric regulatory mechanisms in protein systems.
Collapse
Affiliation(s)
- Zhongjie Liang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Gennady M Verkhivker
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, USA
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA
| | - Guang Hu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
7
|
Abstract
Thanks to the explosion of genomic sequencing, coevolutionary analysis of protein sequences has gained great and ever-increasing popularity in the last decade, and it is currently an important and well-established tool in structural bioinformatics and computational biology. This chapter concisely introduces the theoretical foundation and the practical aspects of coevolutionary analysis, as well as discusses the molecular modeling strategies to exploit its results in the study of protein structure, dynamics, and interactions. We present here a complete pipeline from sequence extraction to contact prediction through two examples, focusing on the predictions of inter-residue contacts in a single protein domain and on the analysis of a multi-domain protein that undergoes functional, large-scale conformational transitions.
Collapse
Affiliation(s)
- Duccio Malinverni
- Laboratory of Statistical Biophysics, Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Alessandro Barducci
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, Montpellier, France.
| |
Collapse
|
8
|
SAXS-guided Enhanced Unbiased Sampling for Structure Determination of Proteins and Complexes. Sci Rep 2018; 8:17748. [PMID: 30531946 PMCID: PMC6288155 DOI: 10.1038/s41598-018-36090-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 11/12/2018] [Indexed: 02/08/2023] Open
Abstract
Molecular simulations can be utilized to predict protein structure ensembles and dynamics, though sufficient sampling of molecular ensembles and identification of key biologically relevant conformations remains challenging. Low-resolution experimental techniques provide valuable structural information on biomolecule at near-native conditions, which are often combined with molecular simulations to determine and refine protein structural ensembles. In this study, we demonstrate how small angle x-ray scattering (SAXS) information can be incorporated in Markov state model-based adaptive sampling strategy to enhance time efficiency of unbiased MD simulations and identify functionally relevant conformations of proteins and complexes. Our results show that using SAXS data combined with additional information, such as thermodynamics and distance restraints, we are able to distinguish otherwise degenerate structures due to the inherent ambiguity of SAXS pattern. We further demonstrate that adaptive sampling guided by SAXS and hybrid information can significantly reduce the computation time required to discover target structures. Overall, our findings demonstrate the potential of this hybrid approach in predicting near-native structures of proteins and complexes. Other low-resolution experimental information can be incorporated in a similar manner to collectively enhance unbiased sampling and improve the accuracy of structure prediction from simulation.
Collapse
|
9
|
Mittal S, Shukla D. Maximizing Kinetic Information Gain of Markov State Models for Optimal Design of Spectroscopy Experiments. J Phys Chem B 2018; 122:10793-10805. [DOI: 10.1021/acs.jpcb.8b07076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Shamsi Z, Cheng KJ, Shukla D. Reinforcement Learning Based Adaptive Sampling: REAPing Rewards by Exploring Protein Conformational Landscapes. J Phys Chem B 2018; 122:8386-8395. [DOI: 10.1021/acs.jpcb.8b06521] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Mittal S, Shukla D. Recruiting machine learning methods for molecular simulations of proteins. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1448976] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Shriyaa Mittal
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Diwakar Shukla
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| |
Collapse
|