1
|
Miolo G, Machin P, De Conto M, Fortuna S, Viglio S, Della Puppa L, Geremia S, Corona G. Identification and Structural Characterization of a Novel COL3A1 Gene Duplication in a Family With Vascular Ehlers-Danlos Syndrome. Mol Genet Genomic Med 2025; 13:e70095. [PMID: 40219677 PMCID: PMC11992433 DOI: 10.1002/mgg3.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/02/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Vascular Ehlers-Danlos syndrome (vEDS) is caused by alterations in the COL3A1 gene, typically involving missense variants that replace glycine residues. In contrast, short in-frame insertions, deletions, and duplications are rare and pose significant challenges for investigation. METHODS The histological examination of vascular tissue from a 26-year-old man, who died from a common iliac artery aneurysm and whose mother died at age 60 from an abdominal aortic dissection, strongly suggested a diagnosis of Ehler-Danlos type IV. Ex vivo collagen phenotype assessment, molecular analysis, and in silico structural studies of type III collagen were subsequently performed. RESULTS Ex vivo analysis of the patient's fibroblasts revealed altered collagen synthesis, whereas the molecular testing identified a novel 18-nucleotide in-frame duplication (c.2868_2885dup-GGGTCTTGCAGGACCACC) in the COL3A1 gene, resulting in a six-amino acid insertion, p.(Leu958_Gly963dup). Structural investigation indicated that this duplication led to a local perturbation of the collagen triple helix near a metalloproteinase cleavage site. CONCLUSION This study highlights the pathogenic role of a novel in-frame duplication in the COL3A1 gene, demonstrating how this seemingly benign alteration significantly compromises collagen turnover and contributes to the development of vEDS.
Collapse
Affiliation(s)
- Gianmaria Miolo
- Medical Oncology and Cancer Prevention UnitCentro di Riferimento Oncologico di Aviano (CRO), IRCCSAvianoItaly
| | - Piernicola Machin
- Pathology Unit, Department of Medicine Laboratory SectionPordenone HospitalPordenoneItaly
| | - Marco De Conto
- Department of Chemical and Pharmaceutical Sciences, Centre of Excellence in BiocrystallographyUniversity of TriesteTriesteItaly
| | - Sara Fortuna
- Department of Chemical and Pharmaceutical Sciences, Centre of Excellence in BiocrystallographyUniversity of TriesteTriesteItaly
| | - Simona Viglio
- Department of Molecular Medicine, Biochemistry UnitUniversity of PaviaPaviaItaly
| | - Lara Della Puppa
- Oncogenetics and Functional Oncogenomics UnitCentro di Riferimento Oncologico di Aviano (CRO), IRCCSAvianoItaly
| | - Silvano Geremia
- Department of Chemical and Pharmaceutical Sciences, Centre of Excellence in BiocrystallographyUniversity of TriesteTriesteItaly
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers UnitCentro di Riferimento Oncologico di Aviano (CRO), IRCCSAvianoItaly
| |
Collapse
|
2
|
Gorantla K, Krishnan A, Waheed SO, Varghese A, DiCastri I, LaRouche C, Paik M, Fields GB, Karabencheva-Christova TG. Novel Insights into the Catalytic Mechanism of Collagenolysis by Zn(II)-Dependent Matrix Metalloproteinase-1. Biochemistry 2024; 63:1925-1940. [PMID: 38963231 PMCID: PMC11309001 DOI: 10.1021/acs.biochem.4c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Collagen hydrolysis, catalyzed by Zn(II)-dependent matrix metalloproteinases (MMPs), is a critical physiological process. Despite previous computational investigations into the catalytic mechanisms of MMP-mediated collagenolysis, a significant knowledge gap in understanding remains regarding the influence of conformational sampling and entropic contributions at physiological temperature on enzymatic collagenolysis. In our comprehensive multilevel computational study, employing quantum mechanics/molecular mechanics (QM/MM) metadynamics (MetD) simulations, we aimed to bridge this gap and provide valuable insights into the catalytic mechanism of MMP-1. Specifically, we compared the full enzyme-substrate complex in solution, clusters in solution, and gas-phase to elucidate insights into MMP-1-catalyzed collagenolysis. Our findings reveal significant differences in the catalytic mechanism when considering thermal effects and the dynamic evolution of the system, contrasting with conventional static potential energy surface QM/MM reaction path studies. Notably, we observed a significant stabilization of the critical tetrahedral intermediate, attributed to contributions from conformational flexibility and entropy. Moreover, we found that protonation of the scissile bond nitrogen occurs via proton transfer from a Zn(II)-coordinated hydroxide rather than from a solvent water molecule. Following C-N bond cleavage, the C-terminus remains coordinated to the catalytic Zn(II), while the N-terminus forms a hydrogen bond with a solvent water molecule. Subsequently, the release of the C-terminus is facilitated by the coordination of a water molecule. Our study underscores the pivotal role of protein conformational dynamics at physiological temperature in stabilizing the transition state of the rate-limiting step and key intermediates, compared to the corresponding reaction in solution. These fundamental insights into the mechanism of collagen degradation provide valuable guidance for the development of MMP-1-specific inhibitors.
Collapse
Affiliation(s)
- Koteswara
Rao Gorantla
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Anandhu Krishnan
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Sodiq O. Waheed
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Ann Varghese
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Isabella DiCastri
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Ciara LaRouche
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Meredith Paik
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Gregg B. Fields
- Department
of Chemistry and Biochemistry and I-HEALTH, Florida Atlantic University, Jupiter, Florida 33458, United States
| | | |
Collapse
|
3
|
Kalantar M, Hilpert GA, Mosca ER, Raeeszadeh-Sarmazdeh M. Engineering metalloproteinase inhibitors: tissue inhibitors of metalloproteinases or antibodies, that is the question. Curr Opin Biotechnol 2024; 86:103094. [PMID: 38430575 DOI: 10.1016/j.copbio.2024.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 03/04/2024]
Abstract
Targeting metalloproteinases (MPs) has been the center of attention for developing therapeutics due to their contribution to a wide range of diseases, including cancer, cardiovascular, neurodegenerative disease, and preterm labor. Protein-based MP inhibitors offer higher stability and selectivity, which is critical for developing efficient therapeutics with low off-target effects. Tissue inhibitors of metalloproteinases (TIMPs), natural inhibitors of MPs, and antibodies provide excellent protein scaffolds for engineering selective or multispecific MP inhibitors. Advances in protein engineering and design techniques, such as rational design and directed evolution using yeast display to develop potent MP inhibitors, are discussed, including but not limited to loop grafting, swapping, and counterselective selection.
Collapse
Affiliation(s)
- Masoud Kalantar
- Chemical and Materials Engineering, University of Nevada, Reno, NV 89557, USA
| | - Gregory A Hilpert
- Chemical and Materials Engineering, University of Nevada, Reno, NV 89557, USA
| | - Ethan R Mosca
- Chemical and Materials Engineering, University of Nevada, Reno, NV 89557, USA
| | | |
Collapse
|
4
|
Varghese A, Waheed SO, Gorantla K, DiCastri I, LaRouche C, Kaski B, Fields GB, Karabencheva-Christova TG. Catalytic Mechanism of Collagen Hydrolysis by Zinc(II)-Dependent Matrix Metalloproteinase-1. J Phys Chem B 2023; 127:9697-9709. [PMID: 37931179 PMCID: PMC10659029 DOI: 10.1021/acs.jpcb.3c04293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023]
Abstract
Human matrix metalloproteinase-1 (MMP-1) is a zinc(II)-dependent enzyme that catalyzes collagenolysis. Despite the availability of extensive experimental data, the mechanism of MMP-1-catalyzed collagenolysis remains poorly understood due to the lack of experimental structure of a catalytically productive enzyme-substrate complex of MMP-1. In this study, we apply molecular dynamics and combined quantum mechanics/molecular mechanics to reveal the reaction mechanism of MMP-1 based on a computationally modeled structure of the catalytically competent complex of MMP-1 that contains a large triple-helical peptide substrate. Our proposed mechanism involves the participation of an auxiliary (second) water molecule (wat2) in addition to the zinc(II)-coordinated water (wat1). The reaction initiates through a proton transfer to Glu219, followed by a nucleophilic attack by a zinc(II)-coordinated hydroxide anion nucleophile at the carbonyl carbon of the scissile bond, leading to the formation of a tetrahedral intermediate (IM2). The process continues with a hydrogen-bond rearrangement to facilitate proton transfer from wat2 to the amide nitrogen of the scissile bond and, finally, C-N bond cleavage. The calculations indicate that the rate-determining step is the water-mediated nucleophilic attack with an activation energy barrier of 22.3 kcal/mol. Furthermore, the calculations show that the hydrogen-bond rearrangement/proton-transfer step can proceed in a consecutive or concerted manner, depending on the conformation of the tetrahedral intermediate, with the consecutive mechanism being energetically preferable. Overall, the study reveals the crucial role of a second water molecule and the dynamics for effective MMP-1-catalyzed collagenolysis.
Collapse
Affiliation(s)
- Ann Varghese
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Sodiq O. Waheed
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Koteswararao Gorantla
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Isabella DiCastri
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Ciara LaRouche
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Brendan Kaski
- Department
of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Gregg B. Fields
- Department
of Chemistry and Biochemistry and I-HEALTH, Florida Atlantic University, Jupiter, Florida 33458, United States
| | | |
Collapse
|
5
|
Choi JY, Chung E. Molecular Dynamics Simulations of Matrix Metalloproteinase 13 and the Analysis of the Specificity Loop and the S1'-Site. Int J Mol Sci 2023; 24:10577. [PMID: 37445757 PMCID: PMC10342107 DOI: 10.3390/ijms241310577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/05/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The specificity loop of Matrix Metalloproteinases (MMPs) is known to regulate recognition of their substrates, and the S1'-site surrounded by the loop is a unique place to address the selectivity of ligands toward each MMP. Molecular dynamics (MD) simulations of apo-MMP-13 and its complex forms with various ligands were conducted to identify the role of the specificity loop for the ligand binding to MMP-13. The MD simulations showed the dual role of T247 as a hydrogen bond donor to the ligand, as well as a contributor to the formation of the van der Waal surface area, with T245 and K249 on the S1'-site. The hydrophobic surface area mediated by T247 blocks the access of water molecules to the S1'-site of MMP-13 and stabilizes the ligand in the site. The F252 residue is flexible in order to search for the optimum location in the S1'-site of the apo-MMP-13, but once a ligand binds to the S1'-site, it can form offset π-π or edge-to-π stacking interactions with the ligand. Lastly, H222 and Y244 provide the offset π-π and π-CH(Cβ) interactions on each side of the phenyl ring of the ligand, and this sandwiched interaction could be critical for the ligand binding to MMP-13.
Collapse
Affiliation(s)
- Jun Yong Choi
- Department of Chemistry and Biochemistry, Queens College, Flushing, NY 11367, USA
- Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Eugene Chung
- Department of Chemistry and Biochemistry, Queens College, Flushing, NY 11367, USA
| |
Collapse
|
6
|
Waheed SO, Varghese A, DiCastri I, Kaski B, LaRouche C, Fields GB, Karabencheva-Christova TG. Mechanism of the Early Catalytic Events in the Collagenolysis by Matrix Metalloproteinase-1. Chemphyschem 2023; 24:e202200649. [PMID: 36161746 DOI: 10.1002/cphc.202200649] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/23/2022] [Indexed: 02/04/2023]
Abstract
Metalloproteinase-1 (MMP-1) catalyzed collagen degradation is essential for a wide variety of normal physiological processes, while at the same time contributing to several diseases in humans. Therefore, a comprehensive understanding of this process is of great importance. Although crystallographic and spectroscopic studies provided fundamental information about the structure and function of MMP-1, the precise mechanism of collagen degradation especially considering the complex and flexible structure of the substrate, remains poorly understood. In addition, how the protein environment dynamically reorganizes at the atomic scale into a catalytically active state capable of collagen hydrolysis remains unknown. In this study, we applied experimentally-guided multiscale molecular modeling methods including classical molecular dynamics (MD), well-tempered (WT) classical metadynamics (MetD), combined quantum mechanics/molecular mechanics (QM/MM) MD and QM/MM MetD simulations to explore and characterize the early catalytic events of MMP-1 collagenolysis. Importantly the study provided a complete atomic and dynamic description of the transition from the open to the closed form of the MMP-1•THP complex. Notably, the formation of catalytically active Michaelis complex competent for collagen cleavage was characterized. The study identified the changes in the coordination state of the catalytic zinc(II) associated with the conformational transformation and the formation of catalytically productive ES complex. Our results confirm the essential role of the MMP-1 catalytic domain's α-helices (hA, hB and hC) and the linker region in the transition to the catalytically competent ES complex. Overall, the results provide unique mechanistic insight into the conformational transformations and associated changes in the coordination state of the catalytic zinc(II) that would be important for the design of effective MMP-1 inhibitors.
Collapse
Affiliation(s)
- Sodiq O Waheed
- Department of Chemistry, Michigan Technological University, Houghton, Michigan, 49931, USA
| | - Ann Varghese
- Department of Chemistry, Michigan Technological University, Houghton, Michigan, 49931, USA
| | - Isabella DiCastri
- Department of Chemistry, Michigan Technological University, Houghton, Michigan, 49931, USA
| | - Brenden Kaski
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan, 49931, USA
| | - Ciara LaRouche
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, 49931, USA
| | - Gregg B Fields
- Department of Chemistry & Biochemistry and I-HEALTH, Florida Atlantic University, Jupiter, Florida, 33458, USA
| | | |
Collapse
|
7
|
Structure of Vibrio collagenase VhaC provides insight into the mechanism of bacterial collagenolysis. Nat Commun 2022; 13:566. [PMID: 35091565 PMCID: PMC8799719 DOI: 10.1038/s41467-022-28264-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
The collagenases of Vibrio species, many of which are pathogens, have been regarded as an important virulence factor. However, there is little information on the structure and collagenolytic mechanism of Vibrio collagenase. Here, we report the crystal structure of the collagenase module (CM) of Vibrio collagenase VhaC and the conformation of VhaC in solution. Structural and biochemical analyses and molecular dynamics studies reveal that triple-helical collagen is initially recognized by the activator domain, followed by subsequent cleavage by the peptidase domain along with the closing movement of CM. This is different from the peptidolytic mode or the proposed collagenolysis of Clostridium collagenase. We propose a model for the integrated collagenolytic mechanism of VhaC, integrating the functions of VhaC accessory domains and its collagen degradation pattern. This study provides insight into the mechanism of bacterial collagenolysis and helps in structure-based drug design targeting of the Vibrio collagenase. The collagenolytic mechanism of Vibrio collagenase, a virulence factor, remains unclear. Here, the authors report the structure of Vibrio collagenase VhaC and propose the mechanism for collagen recognition and degradation, providing new insight into bacterial collagenolysis.
Collapse
|
8
|
Varghese A, Chaturvedi SS, DiCastri B, Mehler E, Fields GB, Karabencheva-Christova TG. Effects of the Nature of the Metal Ion, Protein and Substrate on the Catalytic Center in Matrix Metalloproteinase-1: Insights from Multilevel MD, QM/MM and QM Studies. Chemphyschem 2021; 23:10.1002/cphc.202100680. [PMID: 35991515 PMCID: PMC9387770 DOI: 10.1002/cphc.202100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 11/06/2022]
Abstract
Matrix metalloproteinase-1 (MMP-1) is a Zn(II) dependent endopeptidase involved in the degradation of collagen, the most abundant structural protein in the extracellular matrix of connective tissues and the human body. Herein we performed a multilevel computational analysis including molecular dynamics (MD), combined quantum mechanics/molecular mechanics (QM/MM), and quantum mechanics (QM) calculations to characterize the structure and geometry of the catalytic Zn(II) within the MMP-1 protein environment in comparison to crystallographic and spectroscopic data. The substrate's removal fine-tuned impact on the conformational dynamics and geometry of the catalytic Zn(II) center was also explored. Finally, the study examined the effect of substituting catalytic Zn(II) by Co(II) on the overall structure and dynamics of the MMP-1 THP complex and specifically on the geometry of the catalytic metal center. Overall our QM/MM and QM studies were in good agreement with the MM description of the Zn(II) centers in the MD simulations.
Collapse
Affiliation(s)
- Ann Varghese
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931
| | - Shobhit S Chaturvedi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931
| | - Bella DiCastri
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931
| | - Emerald Mehler
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan 49931
| | - Gregg B Fields
- Department of Chemistry and Biochemistry and I-HEALTH, Florida Atlantic University, Jupiter, Florida 33458
| | | |
Collapse
|
9
|
Varghese A, Chaturvedi SS, Fields GB, Karabencheva-Christova TG. A synergy between the catalytic and structural Zn(II) ions and the enzyme and substrate dynamics underlies the structure-function relationships of matrix metalloproteinase collagenolysis. J Biol Inorg Chem 2021; 26:583-597. [PMID: 34228191 DOI: 10.1007/s00775-021-01876-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/28/2021] [Indexed: 10/20/2022]
Abstract
Matrix metalloproteinases (MMPs) are Zn(II) dependent endopeptidases involved in the degradation of collagen. Unbalanced collagen breakdown results in numerous pathological conditions, including cardiovascular and neurodegenerative diseases and tumor growth and invasion. Matrix metalloproteinase-1 (MMP-1) is a member of the MMPs family. The enzyme contains catalytic and structural Zn(II) ions. Despite many studies on the enzyme, there is little known about the synergy between the two Zn(II) metal ions and the enzyme and substrate dynamics in MMP-1 structure-function relationships. We performed a computational study of the MMP-1•triple-helical peptide (THP) enzyme•substrate complex to provide this missing insight. Our results revealed Zn(II) ions' importance in modulating the long-range correlated motions in the MMP-1•THP complex. Overall, our results reveal the importance of the catalytic Zn(II) and the role of the structural Zn(II) ion in preserving the integrity of the enzyme active site and the overall enzyme-substrate complex synergy with the dynamics of the enzyme and the substrate. Notably, both Zn(II) sites participate in diverse networks of long-range correlated motions that involve the CAT and HPX domains and the THP substrate, thus exercising a complex role in the stability and functionality of the MMP-1•THP complex. Both the Zn(II) ions have a distinct impact on the structural stability and dynamics of the MMP-1•THP complex. The study shifts the paradigm from the "local role" of the Zn(II) ions with knowledge about their essential role in the long-range dynamics and stability of the overall enzyme•substrate (ES) complex.
Collapse
Affiliation(s)
- Ann Varghese
- Department of Chemistry, Michigan Technological University, Houghton, MI, 49931, USA
| | - Shobhit S Chaturvedi
- Department of Chemistry, Michigan Technological University, Houghton, MI, 49931, USA
| | - Gregg B Fields
- Department of Chemistry and Biochemistry and I-HEALTH, Florida Atlantic University, Jupiter, FL, 33458, USA
| | | |
Collapse
|
10
|
Zalloum WA, Zalloum N. Comparative QM/MM Molecular Dynamics and Umbrella Sampling Simulations: Interaction of the Zinc-Bound Intermediate Gem-Diolate Trapoxin A Inhibitor and Acetyl-l-lysine Substrate with Histone Deacetylase 8. J Phys Chem B 2021; 125:5321-5337. [PMID: 33998791 DOI: 10.1021/acs.jpcb.1c01696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Targeting the genetic material without destruction is a priority to develop safe anticancer drugs. Histone deacetylase 8 (HDAC8), which is proved to be involved in carcinogenesis, is an enzyme associated with the chromatin for post-translational deacetylation of acetylated lysine. In this study, HDAC8 co-crystallized with the intermediate state tetrapeptide Trapoxin A (TA) inhibitor and the holoenzyme are utilized to find their conformational ensembles. Furthermore, the co-crystallized intermediate gem-diolate TA was used to find optimum interactions with the active site residues by conventional molecular dynamics (MD) simulation and QM/MM umbrella sampling. Finally, the intermediate state of the acetyl-l-lysine substrate was explored by QM/MM steered MD and compared to the binding of the intermediate state of the inhibitor. This research showed that HDAC8 is flexible and exists in conformational ensembles in its holoenzyme state. Binding of the intermediate state TA stabilizes its conformation. The optimum binding to the active site of HDAC8 for structures of gem-diolate TA (intermediate state) and acetyl-l-lysine (intermediate state) was determined according to the corresponding energy profiles. The use of these models will aid in the design of potentially reversible, potent, and selective inhibitors of HDAC8 for cancer treatment.
Collapse
Affiliation(s)
- Waleed A Zalloum
- Department of Pharmacy, Faculty of Health Science, American University of Madaba, P.O. Box 2882, Amman 11821, Jordan
| | - Needa Zalloum
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
11
|
Kumar L, Planas-Iglesias J, Harms C, Kamboj S, Wright D, Klein-Seetharaman J, Sarkar SK. Activity-dependent interdomain dynamics of matrix metalloprotease-1 on fibrin. Sci Rep 2020; 10:20615. [PMID: 33244162 PMCID: PMC7692495 DOI: 10.1038/s41598-020-77699-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 11/13/2020] [Indexed: 01/18/2023] Open
Abstract
The roles of protein conformational dynamics and allostery in function are well-known. However, the roles that interdomain dynamics have in function are not entirely understood. We used matrix metalloprotease-1 (MMP1) as a model system to study the relationship between interdomain dynamics and activity because MMP1 has diverse substrates. Here we focus on fibrin, the primary component of a blood clot. Water-soluble fibrinogen, following cleavage by thrombin, self-polymerize to form water-insoluble fibrin. We studied the interdomain dynamics of MMP1 on fibrin without crosslinks using single-molecule Forster Resonance Energy Transfer (smFRET). We observed that the distance between the catalytic and hemopexin domains of MMP1 increases or decreases as the MMP1 activity increases or decreases, respectively. We modulated the activity using (1) an active site mutant (E219Q) of MMP1, (2) MMP9, another member of the MMP family that increases the activity of MMP1, and (3) tetracycline, an inhibitor of MMP1. We fitted the histograms of smFRET values to a sum of two Gaussians and the autocorrelations to an exponential and power law. We modeled the dynamics as a two-state Poisson process and calculated the kinetic rates from the histograms and autocorrelations. Activity-dependent interdomain dynamics may enable allosteric control of the MMP1 function.
Collapse
Affiliation(s)
- Lokender Kumar
- Department of Physics, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
| | - Joan Planas-Iglesias
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic
| | - Chase Harms
- Department of Physics, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
| | - Sumaer Kamboj
- Department of Physics, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
| | - Derek Wright
- Department of Physics, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
| | - Judith Klein-Seetharaman
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Department of Chemistry, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
| | - Susanta K Sarkar
- Department of Physics, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA.
| |
Collapse
|
12
|
Manka SW, Brew K. Thermodynamic and Mechanistic Insights into Coupled Binding and Unwinding of Collagen by Matrix Metalloproteinase 1. J Mol Biol 2020; 432:5985-5993. [PMID: 33058879 DOI: 10.1016/j.jmb.2020.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022]
Abstract
Local unwinding of the collagen triple helix is a necessary step for initiating the collagen degradation cascade in extracellular matrices. A few matrix metalloproteinases (MMPs) are known to support this key process, but its energetic aspects remain unknown. Here, we captured the thermodynamics of the triple helix unwinding by monitoring interactions between a collagen peptide and MMP-1(E200A) - an active-site mutant of an archetypal vertebrate collagenase - at increasing temperatures, using isothermal titration calorimetry (ITC). Coupled binding and unwinding manifests as a curved relationship between the total enthalpy change and temperature of the reaction, producing increasingly negative heat capacity change (ΔΔCp ≈ -36.3 kcal/molK2). A specially designed solid-phase binding and cleavage assay (SPBCA) reported strain in the catalytically relevant unwound state, suggesting that this state is distinct from the horizon of sampled conformations of the collagenase-susceptible site. MMP-1 appears to blend selected fit with induced fit mechanisms to catalyse collagen unwinding prior to cleavage of individual collagen chains.
Collapse
Affiliation(s)
- Szymon W Manka
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| | - Keith Brew
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
13
|
Kumar L, Nash A, Harms C, Planas-Iglesias J, Wright D, Klein-Seetharaman J, Sarkar SK. Allosteric Communications between Domains Modulate the Activity of Matrix Metalloprotease-1. Biophys J 2020; 119:360-374. [PMID: 32585130 PMCID: PMC7376139 DOI: 10.1016/j.bpj.2020.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/30/2020] [Accepted: 06/09/2020] [Indexed: 11/23/2022] Open
Abstract
An understanding of the structure-dynamics relationship is essential for understanding how a protein works. Prior research has shown that the activity of a protein correlates with intradomain dynamics occurring at picosecond to millisecond timescales. However, the correlation between interdomain dynamics and the function of a protein is poorly understood. Here, we show that communications between the catalytic and hemopexin domains of matrix metalloprotease-1 (MMP1) on type 1 collagen fibrils correlate with its activity. Using single-molecule Förster resonance energy transfer, we identified functionally relevant open conformations in which the two MMP1 domains are well separated, which were significantly absent for catalytically inactive point mutant (E219Q) of MMP1 and could be modulated by an inhibitor or an enhancer of activity. The observed relevance of open conformations resolves the debate about the roles of open and closed MMP1 structures in function. We fitted the histograms of single-molecule Förster resonance energy transfer values to a sum of two Gaussians and the autocorrelations to an exponential and power law. We used a two-state Poisson process to describe the dynamics and calculate the kinetic rates from the fit parameters. All-atom and coarse-grained simulations reproduced some of the experimental features and revealed substrate-dependent MMP1 dynamics. Our results suggest that an interdomain separation facilitates opening up the catalytic pocket so that the collagen chains come closer to the MMP1 active site. Coordination of functional conformations at different parts of MMP1 occurs via allosteric communications that can take place via interactions mediated by collagen even if the linker between the domains is absent. Modeling dynamics as a Poisson process enables connecting the picosecond timescales of molecular dynamics simulations with the millisecond timescales of single-molecule measurements. Water-soluble MMP1 interacting with water-insoluble collagen fibrils poses challenges for biochemical studies that the single-molecule tracking can overcome for other insoluble substrates. Interdomain communications are likely important for multidomain proteins.
Collapse
Affiliation(s)
- Lokender Kumar
- Department of Physics, Colorado School of Mines, Golden, Colorado
| | - Anthony Nash
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Chase Harms
- Department of Physics, Colorado School of Mines, Golden, Colorado
| | - Joan Planas-Iglesias
- Warwick Medical School, University of Warwick, Coventry, United Kingdom; Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Derek Wright
- Department of Physics, Colorado School of Mines, Golden, Colorado
| | - Judith Klein-Seetharaman
- Warwick Medical School, University of Warwick, Coventry, United Kingdom; Department of Chemistry, Colorado School of Mines, Golden, Colorado
| | - Susanta K Sarkar
- Department of Physics, Colorado School of Mines, Golden, Colorado.
| |
Collapse
|
14
|
Yasmeen S, Gupta P. Interaction of Selected Terpenoids From Dalbergia sissoo With Catalytic Domain of Matrix Metalloproteinase-1: An In Silico Assessment of Their Anti-wrinkling Potential. Bioinform Biol Insights 2020; 13:1177932219896538. [PMID: 31903022 PMCID: PMC6931142 DOI: 10.1177/1177932219896538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/27/2019] [Indexed: 12/22/2022] Open
Abstract
Matrix metalloproteinase-1 (MMP-1) is a predominant collagenase enzyme that
cleaves collagen fibers, contributing to skin wrinkling. Matrix
metalloproteinase-1 inhibitors of herbal origin may provide an earnest
probability to offer a novel curative approach against MMP-1-mediated
collagenolysis, prompted by ultraviolet (UV)-induced overexpression of MMP-1. In
this in silico study, we have explored the MMP-1 inhibitory potential of
selected terpenoids from Dalbergia sissoo extracts. Two
triterpenoids (lupeol and betulin), 1 diterpenoid (phytol), and 1 ester
derivative of lupeol (lupeol acetate) were studied along with a reference
inhibitor (doxycycline) using molecular docking approach. Non covalent
interaction between the target ligands was found. Lupeol was found interacting
with amino acid (AA) residues in the catalytic domain of MMP-1 with 3 hydrogen
bonds (H-bond) formation, phytol with 1 and doxycycline with 2 H-bonds, whereas
betulin and lupeol acetate were not able to form any H-bond with the AA residues
in the catalytic site of the target protein. However, hydrophobic interaction
between these ligands and protein was evident with select residues. The binding
affinity of lupeol was highest (binding free energy,
ΔG = −8.24 kcal/mol), which was greater than reference drug,
doxycycline (ΔG = −8.05 kcal/mol). Lupeol acetate and phytol
displayed a ΔG value of −7.12 and −7.06 kcal/mol, respectively,
whereas betulin holds less binding affinity for the target receptor
(ΔG = −4.66 kcal/mol). In silico pharmacokinetic studies
demonstrated drug-like properties of the ligand compounds. This study shows that
hydroxyl groups present in the ligands play a substantial role in establishing
protein ligand interaction via hydrogen bonding.
Collapse
Affiliation(s)
- Shagufta Yasmeen
- Agriculture Plant Biotechnology Lab (ARL-316), University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector-16 C, Dwarka, New Delhi-110078, India
| | - Promila Gupta
- Agriculture Plant Biotechnology Lab (ARL-316), University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector-16 C, Dwarka, New Delhi-110078, India
| |
Collapse
|
15
|
Waheed SO, Ramanan R, Chaturvedi SS, Ainsley J, Evison M, Ames JM, Schofield CJ, Christov CZ, Karabencheva-Christova TG. Conformational flexibility influences structure-function relationships in nucleic acid N-methyl demethylases. Org Biomol Chem 2019; 17:2223-2231. [PMID: 30720838 DOI: 10.1039/c9ob00162j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
N-Methylation of DNA/RNA bases can be regulatory or damaging and is linked to diseases including cancer and genetic disorders. Bacterial AlkB and human FTO are DNA/RNA demethylases belonging to the Fe(ii) and 2-oxoglutarate oxygenase superfamily. Modelling studies reveal conformational dynamics influence structure-function relationships of AlkB and FTO, e.g. why 1-methyladenine is a better substrate for AlkB than 6-methyladenine. Simulations show that the flexibility of the double stranded DNA substrate in AlkB influences correlated motions, including between the core jelly-roll fold and an active site loop involved in substrate binding. The FTO N- and C-terminal domains move in respect to one another in a manner likely important for substrate binding. Substitutions, including clinically observed ones, influencing catalysis contribute to the network of correlated motions in AlkB and FTO. Overall, the calculations highlight the importance of the overall protein environment and its flexibility to the geometry of the reactant complexes.
Collapse
Affiliation(s)
- Sodiq O Waheed
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|