1
|
Ion BF, Aboelnga MM, Gauld JW. QM/MM investigation of the discriminatory pre-transfer editing mechanism operated by Lysyl-tRNA synthetase. J Biomol Struct Dyn 2025; 43:4004-4012. [PMID: 38197420 DOI: 10.1080/07391102.2023.2301054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes that remarkable facilitate the aminoacylation process during translation. With a high fidelity, the mischarged tRNA is prevented through implementing pre- and post-transfer proofreading mechanisms. For instance, Lysine-tRNA synthetase charges the native substrate, lysine, to its cognate tRNA. In spite of the great structural similarity between lysine to the noncognate and toxic ornithine, with the side chain of lysine being only one methylene group longer, LysRS is able to achieve this discrimination with a high efficiency. In this work, the hybrid quantum mechanics/molecular mechanics (QM/MM) investigation was applied to probe the pre-transfer editing mechanism catalyzed by lysyl-tRNA synthetase to reject the noncognte aminoacyl, L-ornityl (Orn), compared to the cognate substrate, L-lysyl. Particularly, the self-cyclization pre-transfer editing mechanism was explored for the two substrates. The substrate-assisted self-cyclization editing of Orn-AMP, where its phosphate moiety acts as the catalytic base, is found to be the rate-determining step with an energy barrier of 101.2 kJ mol-1. Meanwhile, the corresponding rate-limiting pathway for the native Lys-AMP lies at 140.2 kJ mol-1. This observation clearly indicated the infeasibility of this catalytic scenario in the presence of the native substrate. Interestingly, a thermodynamically favorable cyclic product of -92.9 kJ mol-1 with respect to the aminoacyl reactant complex demonstrated evidence of a successful pre-transfer editing. This reaction resulted in the discharge of the on-cognate -ornithine derivative from LysU's active site. These valuable mechanistic insights are valuable to enrich our knowledge of this extremely efficient and specific catalytic machinery of LysRS.
Collapse
Affiliation(s)
- Bogdan F Ion
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Mohamed M Aboelnga
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - James W Gauld
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
2
|
Aboelnga MM, Petgrave M, Kalyaanamoorthy S, Ganesan A. Revealing the impact of active site residues in modeling the inhibition mechanism of SARS-Cov-2 main protease by GC373. Comput Biol Med 2025; 187:109779. [PMID: 39933269 DOI: 10.1016/j.compbiomed.2025.109779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
Main protease (Mpro) is a cysteine protease enzyme crucial for the replication of SARS-CoV-2, the etiological agent of COVID-19 and thus considered as a viable target for antiviral development. The GC373 compound, an aldehyde-containing inhibitor, is one of the most effective inhibitors that retards the catalytic function of Mpro. A deeper understanding of the inhibitory action of GC373 by providing precise mechanistic details, is pivotal toward developing more potent inhibitors against Mpro. In this work, we provide novel insights into the inhibition mechanism considering different models and possible pathways using a combination of molecular dynamics and hybrid quantum mechanical/molecular mechanical (QM/MM) methodologies. Our study reveals the impact of key residues on both the binding of the GC373 inhibitor and its inhibition mechanism. Together with the oxyanion hole residues, G143, S144 and C145, we note that H163, and E166 residues play a crucial role in the binding of the inhibitor. Further, our exploration of two pathways namely, water-assisted and direct inhibition mechanisms, using three differently sized QM/MM models shows consistent and distinguishable trends in catalytic pathways and rate-limiting steps, respectively. Our results highlight the importance of treating more representative active site residues in the QM layer enabling a more accurate description of the inhibition mechanism. More importantly, we propose that designing novel inhibitors that could afford stronger interaction with the underlying essential residues is a promising strategy to guide the efforts toward optimizing efficient inhibitors against Mpro.
Collapse
Affiliation(s)
- Mohamed M Aboelnga
- ArGan'sLab, School of Pharmacy, Faculty of Science, University of Waterloo, Kitchener, N2G 1C5, Ontario, Canada; Department of Chemistry, University of Waterloo, Waterloo, N2L 3G1, Ontario, Canada; Chemistry Department, Faculty of Science, Damietta University, New Damietta, 34517, Egypt; King Salman International University, Faculty of Science, Ras Sudr, 46612, Sinai, Egypt.
| | - Maya Petgrave
- ArGan'sLab, School of Pharmacy, Faculty of Science, University of Waterloo, Kitchener, N2G 1C5, Ontario, Canada.
| | - Subha Kalyaanamoorthy
- Department of Chemistry, University of Waterloo, Waterloo, N2L 3G1, Ontario, Canada; Waterloo Artificial Intelligence Institute, University of Waterloo, Waterloo, Ontario, Canada; Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| | - Aravindhan Ganesan
- ArGan'sLab, School of Pharmacy, Faculty of Science, University of Waterloo, Kitchener, N2G 1C5, Ontario, Canada; ArGan'sLab, Department of Chemistry and Biochemistry, Faculty of Science, Wilfrid Laurier University, Waterloo, N2L 3C5, Ontario, Canada.
| |
Collapse
|
3
|
Aboelnga MM, Gauld JW. Screening a library of potential competitive inhibitors against bacterial threonyl-tRNA synthetase: DFT calculations. J Biomol Struct Dyn 2023; 42:13555-13563. [PMID: 37909495 DOI: 10.1080/07391102.2023.2276878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
Due to the growing interest in directing aminoacyl-tRNA synthetases for antimicrobial therapies, evaluating the binding proficiency of potential inhibitors against this target holds significant importance. In this work, we proposed potential ligands that could properly bind to the crucial Zn(II) cofactor located in the active site of Threonyl-tRNA synthetases (ThrRS), potentially functioning as competitive inhibitors. Initially, detailed DFT quantum chemical study was conducted to examine the binding ability of threonine against unnatural amino acids to cofactor Zn(II). Then, the binding energy value for each suggested ligand has been determined and compared to the value determined for the native substrate, threonine. Our screening investigation showed that the native threonine should coordinate in a bidentate fashion to this Zn(II) which lead to the highest (binding energy) BE Thereby, the synthetic site of ThrRS rejects unnatural amino acids that cannot afford this type of coordination to Zn(II) ion which has been supported by our calculations. Moreover, based on their binding to the Zn(II) and the obtained BE values compared to the cognate threonine, many potent ligands have been suggested. Importantly, ligands with deprotonated warheads showed the highest binding ability amongst a list of potential hits. Further investigation on the selected ligands using molecular docking and QM/MM calculations confirmed our findings of the suggested ligands being able to bind efficiently in the active site of ThrRS. The suggested hits from this study should be valuable in paving routs for developing candidates as competitive inhibitors against the bacterial ThrRS.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohamed M Aboelnga
- Department of Chemistry, Faculty of Science, Damietta University, New Damietta, Egypt
| | - James W Gauld
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada
| |
Collapse
|
4
|
Elsayed SA, Saleh EE, Aboelnga MM, Toson EA. Experimental and computational studies of silver(I) dibenzoylmethane-based complexes, interaction with DNA/RNA/BSA biomolecules, and in vitro cytotoxic activity. J Inorg Biochem 2023; 241:112132. [PMID: 36701985 DOI: 10.1016/j.jinorgbio.2023.112132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Two silver(I) complexes of composition [Ag2(L)2] (1) and [Ag(L)(PPh3)2](2) (HL = dibenzoyl- methane, PPh3 = triphenylphosphine) were synthesized and characterized by elemental analysis, FTIR, NMR, XRPD, and UV-visible spectra. The molecular structures of the studied ligands and Ag(I) complexes have been characterized using Density Function Theory (DFT) calculations. This analysis has enabled us to determine the reactivity and the coordination site(s) for each ligand. Ag(I) ion is found to be coordinated with the ligand's oxygens in almost a linear fashion in complex (1), while in complex (2) it adopts a tetrahedral geometry. The interaction compounds with biomolecules; calf thymus (ct DNA), yeast-tRNA, and bovine serum albumin (BSA) were investigated using both absorption and fluorescence spectroscopy. The in vitro cytotoxic studies of the complexes against normal human lung fibroblast (WI38), cancerous breast (MDA-MB-231), mammary gland breast (MCF7), hepatocellular (HePG2), and prostate (PC3) cell lines indicated that the complexes are highly toxic to the cancer cells but less toxic towards the normal one when compared with the ligand. Flow cytometric results showed that complex (1) induced cell cycle arrest at the G2/M phase, and complex (2) at G2/M and S phases. Moreover, the results of apoptotic genes (caspase3 and p53) and anti-apoptotic (Bcl2) led us to suggest an apoptotic killing mechanism of cells rather than a necrotic one.
Collapse
Affiliation(s)
- Shadia A Elsayed
- Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt.
| | - Elham E Saleh
- Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| | - Mohamed M Aboelnga
- Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| | - Elshahat A Toson
- Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| |
Collapse
|
5
|
Aboelnga MM. Mechanistic insights into the chemistry of compound I formation in heme peroxidases: quantum chemical investigations of cytochrome c peroxidase. RSC Adv 2022; 12:15543-15554. [PMID: 35685178 PMCID: PMC9125774 DOI: 10.1039/d2ra01073a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
Peroxidases are heme containing enzymes that catalyze peroxide-dependant oxidation of a variety of substrates through forming key ferryl intermediates, compounds I and II. Cytochrome c peroxidase (Ccp1) has served for decades as a chemical model toward understanding the chemical biology of this heme family of enzymes. It is known to feature a distinctive electronic behaviour for its compound I despite significant structural similarity to other peroxidases. A water-assisted mechanism has been proposed over a dry one for the formation of compound I in similar peroxidases. To better identify the viability of these mechanisms, we employed quantum chemistry calculations for the heme pocket of Ccp1 in three different spin states. We provided comparative energetic and structural results for the six possible pathways that suggest the preference of the dry mechanism energetically and structurally. The doublet state is found to be the most preferable spin state for the mechanism to proceed and for the formation of the Cpd I ferryl-intermediate irrespective of the considered dielectric constant used to represent the solvent environment. The nature of the spin state has negligible effects on the calculated structures but great impact on the energetics. Our analysis was also expanded to explain the major contribution of key residues to the peroxidase activity of Ccp1 through exploring the mechanism at various in silico generated Ccp1 variants. Overall, we provide valuable findings toward solving the current ambiguity of the exact mechanism in Ccp1, which could be applied to peroxidases with similar heme pockets. Discerning the feasibility of a no-water peroxidase mechanism in the doublet spin state irrespective of the environment surrounding the heme pocket.![]()
Collapse
Affiliation(s)
- Mohamed M Aboelnga
- Chemistry Department, Faculty of Science, Damietta University New Damietta 34517 Egypt
| |
Collapse
|
6
|
Comparative QM/MM study on the inhibition mechanism of β-Hydroxynorvaline to Threonyl-tRNA synthetase. J Mol Graph Model 2022; 115:108224. [DOI: 10.1016/j.jmgm.2022.108224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/26/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022]
|
7
|
Substrate-assisted mechanism of catalytic hydrolysis of misaminoacylated tRNA required for protein synthesis fidelity. Biochem J 2019; 476:719-732. [PMID: 30718305 DOI: 10.1042/bcj20180910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/28/2019] [Accepted: 02/01/2019] [Indexed: 11/17/2022]
Abstract
d-aminoacyl-tRNA-deacylase (DTD) prevents the incorporation of d-amino acids into proteins during translation by hydrolyzing the ester bond between mistakenly attached amino acids and tRNAs. Despite extensive study of this proofreading enzyme, the precise catalytic mechanism remains unknown. Here, a combination of biochemical and computational investigations has enabled the discovery of a new substrate-assisted mechanism of d-Tyr-tRNATyr hydrolysis by Thermus thermophilus DTD. Several functional elements of the substrate, misacylated tRNA, participate in the catalysis. During the hydrolytic reaction, the 2'-OH group of the А76 residue of d-Tyr-tRNATyr forms a hydrogen bond with a carbonyl group of the tyrosine residue, stabilizing the transition-state intermediate. Two water molecules participate in this reaction, attacking and assisting ones, resulting in a significant decrease in the activation energy of the rate-limiting step. The amino group of the d-Tyr aminoacyl moiety is unprotonated and serves as a general base, abstracting the proton from the assisting water molecule and forming a more nucleophilic ester-attacking species. Quantum chemical methodology was used to investigate the mechanism of hydrolysis. The DFT-calculated deacylation reaction is in full agreement with the experimental data. The Gibbs activation energies for the first and second steps were 10.52 and 1.05 kcal/mol, respectively, highlighting that the first step of the hydrolysis process is the rate-limiting step. Several amino acid residues of the enzyme participate in the coordination of the substrate and water molecules. Thus, the present work provides new insights into the proofreading details of misacylated tRNAs and can be extended to other systems important for translation fidelity.
Collapse
|