1
|
Hu X, Li P, Xu D, Liu H, Hao Q, Zhang M, Wang Z, Wei T, Dai Z. Facile Alkyne Assembly-Enabled Functional Au Nanosheets for Photoacoustic Imaging-Guided Photothermal/Gene Therapy of Orthotopic Glioblastoma. J Am Chem Soc 2024. [PMID: 39563602 DOI: 10.1021/jacs.4c08990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Treatment of glioblastoma (GBM) remains challenging due to the presence of blood-brain barrier (BBB) and tumor heterogeneity. Herein, Au nanosheets (AuNSs) functionalized with RGD peptides and small interfering RNA (siRNA), referred to as AuNSs-RGD-C≡C-siRNA (ARCR), are prepared to achieve multimodal therapy for GBM. The AuNSs with a large modifiable surface area, intriguing photothermal conversion efficiency (50.26%), and remarkable photothermal stability (44 cycles over 7 h) are created using a well-designed amphiphilic surfactant. Furthermore, alkynyl groups are assembled onto the Au surface within 1 min, enabling strong covalent binding of siRNA to AuNSs and thereby avoiding the interference from biological thiols. Owing to the lipophilicity of the surfactant and the targeting property of RGD, ARCR effectively passes through the BBB and accumulates in GBM tumor regions, allowing near-infrared photoacoustic imaging-guided photothermal/gene therapy. This work proposes a facile strategy to construct theranostic Au-based materials, highlighting the potential of multifunctional nanoagents for GBM therapy.
Collapse
Affiliation(s)
- Xixi Hu
- Collaborative Innovation Center of Biomedical Functional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Peiling Li
- Collaborative Innovation Center of Biomedical Functional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Dongdong Xu
- Collaborative Innovation Center of Biomedical Functional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Hua Liu
- Collaborative Innovation Center of Biomedical Functional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Qiaoqiao Hao
- Collaborative Innovation Center of Biomedical Functional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Mengyang Zhang
- Collaborative Innovation Center of Biomedical Functional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zhaoyin Wang
- Collaborative Innovation Center of Biomedical Functional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Tianxiang Wei
- School of Environment, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zhihui Dai
- Collaborative Innovation Center of Biomedical Functional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
2
|
Ditta SA, Yaqub A, Tanvir F, Rashid M, Ullah R, Zubair M, Ali S, Anjum KM. Gold nanoparticles capped with L-glycine, L-cystine, and L-tyrosine: toxicity profiling and antioxidant potential. JOURNAL OF MATERIALS SCIENCE 2023; 58:2814-2837. [PMID: 36743265 PMCID: PMC9888356 DOI: 10.1007/s10853-023-08209-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Biomolecules-based surface modifications of nanomaterials may yield effective and biocompatible nanoconjugates. This study was designed to evaluate gold nanoconjugates (AuNCs) for their altered antioxidant potential. Gold nanoparticles (AuNPs) and their conjugates gave SPR peaks in the ranges of 512-525 nm, with red or blueshift for different conjugates. Cys-AuNCs demonstrated enhanced (p < 0.05) and Gly-AuNCs (p > 0.05) displayed reduced DPPH activity. Gly-AuNCs and Tyr-AuNCs displayed enhanced ferric-reducing power and hydrogen peroxide scavenging activity, respectively. Cadmium-intoxicated mice were exposed to gold nanomaterials, and the level of various endogenous parameters, i.e., CAT, GST, SOD, GSH, and MTs, was evaluated. GSH and MTs in liver tissues of the cadmium-exposed group (G2) were elevated (p < 0.05), while other groups showed nonsignificance deviations than the control group. It is concluded that these nanoconjugates might provide effective nanomaterials for biomedical applications. However, more detailed studies for their safety profiling are needed before their practical applications.
Collapse
Affiliation(s)
- Sarwar Allah Ditta
- Department of Zoology, Government College University, Lahore, 54000 Pakistan
| | - Atif Yaqub
- Department of Zoology, Government College University, Lahore, 54000 Pakistan
| | - Fouzia Tanvir
- Department of Zoology, University of Okara, Okara, 56300 Pakistan
| | - Muhammad Rashid
- Department of Zoology, Government College University, Lahore, 54000 Pakistan
| | - Rehan Ullah
- Department of Zoology, Government College University, Lahore, 54000 Pakistan
| | - Muhammad Zubair
- Department of Wildlife and Ecology, The University of Veterinary and Animal Sciences, Lahore, 54000 Pakistan
| | - Shaista Ali
- Department of Chemistry, Government College University, Lahore, 54000 Pakistan
| | - Khalid Mahmood Anjum
- Department of Wildlife and Ecology, The University of Veterinary and Animal Sciences, Lahore, 54000 Pakistan
| |
Collapse
|
3
|
|
4
|
Li Z, Ruiz VG, Kanduč M, Dzubiella J. Highly Heterogeneous Polarization and Solvation of Gold Nanoparticles in Aqueous Electrolytes. ACS NANO 2021; 15:13155-13165. [PMID: 34370454 DOI: 10.1021/acsnano.1c02668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The performance of gold nanoparticles (NPs) in applications depends critically on the structure of the NP-solvent interface, at which the electrostatic surface polarization is one of the key characteristics that affects hydration, ionic adsorption, and electrochemical reactions. Here, we demonstrate significant effects of explicit metal polarizability on the solvation and electrostatic properties of bare gold NPs in aqueous electrolyte solutions of sodium salts of various anions (Cl-, BF4-, PF6-, nitrophenolate, and 3- and 4-valent hexacyanoferrate), using classical molecular dynamics simulations with a polarizable core-shell model for the gold atoms. We find considerable spatial heterogeneity of the polarization and electrostatic potentials on the NP surface, mediated by a highly facet-dependent structuring of the interfacial water molecules. Moreover, ion-specific, facet-dependent ion adsorption leads to considerable alterations of the interfacial polarization. Compared to nonpolarizable NPs, surface polarization modifies water local dipole densities only slightly but has substantial effects on the electrostatic surface potentials and leads to significant lateral redistributions of ions on the NP surface. Besides, interfacial polarization effects cancel out in the far field for monovalent ions but not for polyvalent ions, as anticipated from continuum "image-charge" concepts. Far-field effective Debye-Hückel surface potentials change accordingly in a valence-specific fashion. Hence, the explicit charge response of metal NPs is crucial for the accurate description and interpretation of interfacial electrostatics (e.g., for charge transfer and interfacial polarization in catalysis and electrochemistry).
Collapse
Affiliation(s)
- Zhujie Li
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | - Victor G Ruiz
- Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin, D-14109 Berlin, Germany
| | - Matej Kanduč
- Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Joachim Dzubiella
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
- Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin, D-14109 Berlin, Germany
| |
Collapse
|
5
|
|
6
|
Li Z, Ruiz VG, Kanduč M, Dzubiella J. Ion-Specific Adsorption on Bare Gold (Au) Nanoparticles in Aqueous Solutions: Double-Layer Structure and Surface Potentials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13457-13468. [PMID: 33140973 DOI: 10.1021/acs.langmuir.0c02097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We study the solvation and electrostatic properties of bare gold (Au) nanoparticles (NPs) of 1-2 nm in size in aqueous electrolyte solutions of sodium salts of various anions with large physicochemical diversity (Cl-, BF4-, PF6-, Nip- (nitrophenolate), 3- and 4-valent hexacyanoferrate (HCF)) using nonpolarizable, classical molecular dynamics computer simulations. We find a substantial facet selectivity in the adsorption structure and spatial distribution of the ions at the AuNPs: while sodium and some of the anions (e.g., Cl-, HCF3-) adsorb more at the "edgy" (100) and (110) facets of the NPs, where the water hydration structure is more disordered, other ions (e.g., BF4-, PF6-, Nip-) prefer to adsorb strongly on the extended and rather flat (111) facets. In particular, Nip-, which features an aromatic ring in its chemical structure, adsorbs strongly and perturbs the first water monolayer structure on the NP (111) facets substantially. Moreover, we calculate adsorptions, radially resolved electrostatic potentials as well as the far-field effective electrostatic surface charges and potentials by mapping the long-range decay of the calculated electrostatic potential distribution onto the standard Debye-Hückel form. We show how the extrapolation of these values to other ionic strengths can be performed by an analytical Adsorption-Grahame relation between the effective surface charge and potential. We find for all salts negative effective surface potentials in the range from -10 mV for NaCl down to about -80 mV for NaNip, consistent with typical experimental ranges for the zeta potential. We discuss how these values depend on the surface definition and compare them to the explicitly calculated electrostatic potentials near the NP surface, which are highly oscillatory in the ±0.5 V range.
Collapse
Affiliation(s)
- Zhujie Li
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg D-79104, Germany
| | - Victor G Ruiz
- Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin, Berlin D-14109, Germany
| | - Matej Kanduč
- Jožef Stefan Institute, Ljubljana SI-1000, Slovenia
| | - Joachim Dzubiella
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg D-79104, Germany
- Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin, Berlin D-14109, Germany
| |
Collapse
|
7
|
Zhdanov VP. Nanoparticles without and with protein corona: van der Waals and hydration interaction. J Biol Phys 2019; 45:307-316. [PMID: 31432351 PMCID: PMC6706358 DOI: 10.1007/s10867-019-09530-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/31/2019] [Indexed: 01/21/2023] Open
Abstract
The van der Waals (vdW) interaction between nanoparticles (NPs) in general, and especially between metal NPs, may be appreciable, and may result in nanoparticle aggregation. In biofluids, NPs become rapidly surrounded by a protein corona (PC). Here, the vdW and hydration interaction of NPs with and without PC are compared in detail. The focus is on two widely used types of NPs fabricated of SiO2 and Au and possessing weak and strong vdW interactions, respectively. For SiO2, the presence of PC increases the vdW interaction, but it remains relatively weak and insufficient for aggregation. For Au, the presence of PC decreases the vdW interaction, and in the case of small NPs (≤ 40 nm in diameter) it may become insufficient for aggregation as well while the larger NPs can aggregate.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Biological Physics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
8
|
|
9
|
Kyrychenko A, Blazhynska MM, Slavgorodska MV, Kalugin ON. Stimuli-responsive adsorption of poly(acrylic acid) onto silver nanoparticles: Role of polymer chain length and degree of ionization. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Colherinhas G, Malaspina T, Fileti EE. Storing Energy in Biodegradable Electrochemical Supercapacitors. ACS OMEGA 2018; 3:13869-13875. [PMID: 30411051 PMCID: PMC6217657 DOI: 10.1021/acsomega.8b01980] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/15/2018] [Indexed: 05/04/2023]
Abstract
The development of green and biodegradable electrical components is one of the main fronts of research to overcome the growing ecological problem related to the issue of electronic waste. At the same time, such devices are highly desirable in biomedical applications such as integrated bioelectronics, for which biocompatibility is also required. Supercapacitors for storage of electrochemical energy, designed only with biodegradable organic matter would contemplate both aspects, that is, they would be ecologically harmless after their service lifetime and would be an important component for applications in biomedical engineering. By means of atomistic simulations of molecular dynamics, we propose a supercapacitor whose electrodes are formed exclusively by self-organizing peptides and whose electrolyte is a green amino acid ionic liquid. Our results indicate that this supercapacitor has a high potential for energy storage with superior performance than conventional supercapacitors. In particular its capacity to store energy was estimated to be almost 20 times greater than an analogue one of planar metallic electrodes.
Collapse
Affiliation(s)
- Guilherme Colherinhas
- Departamento
de Física, CEPAE, Universidade Federal
de Goiás, 74690-900 Goiânia, Goiás, Brazil
| | - Thaciana Malaspina
- Instituto
de Ciência e Tecnologia, Universidade
Federal de São Paulo, 12247-014 São José
dos Campos, São Paulo, Brazil
| | - Eudes Eterno Fileti
- Instituto
de Ciência e Tecnologia, Universidade
Federal de São Paulo, 12247-014 São José
dos Campos, São Paulo, Brazil
| |
Collapse
|