1
|
Bardelang P, Murray EJ, Blower I, Zandomeneghi S, Goode A, Hussain R, Kumari D, Siligardi G, Inoue K, Luckett J, Doutch J, Emsley J, Chan WC, Hill P, Williams P, Bonev BB. Conformational analysis and interaction of the Staphylococcus aureus transmembrane peptidase AgrB with its AgrD propeptide substrate. Front Chem 2023; 11:1113885. [PMID: 37214482 PMCID: PMC10196373 DOI: 10.3389/fchem.2023.1113885] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Virulence gene expression in the human pathogen, S. aureus is regulated by the agr (accessory gene regulator) quorum sensing (QS) system which is conserved in diverse Gram-positive bacteria. The agr QS signal molecule is an autoinducing peptide (AIP) generated via the initial processing of the AgrD pro-peptide by the transmembrane peptidase AgrB. Since structural information for AgrB and AgrBD interactions are lacking, we used homology modelling and molecular dynamics (MD) annealing to characterise the conformations of AgrB and AgrD in model membranes and in solution. These revealed a six helical transmembrane domain (6TMD) topology for AgrB. In solution, AgrD behaves as a disordered peptide, which binds N-terminally to membranes in the absence and in the presence of AgrB. In silico, membrane complexes of AgrD and dimeric AgrB show non-equivalent AgrB monomers responsible for initial binding and for processing, respectively. By exploiting split luciferase assays in Staphylococcus aureus, we provide experimental evidence that AgrB interacts directly with itself and with AgrD. We confirmed the in vitro formation of an AgrBD complex and AIP production after Western blotting using either membranes from Escherichia coli expressing AgrB or with purified AgrB and T7-tagged AgrD. AgrB and AgrD formed stable complexes in detergent micelles revealed using synchrotron radiation CD (SRCD) and Landau analysis consistent with the enhanced thermal stability of AgrB in the presence of AgrD. Conformational alteration of AgrB following provision of AgrD was observed by small angle X-ray scattering from proteodetergent micelles. An atomistic description of AgrB and AgrD has been obtained together with confirmation of the AgrB 6TMD membrane topology and existence of AgrBD molecular complexes in vitro and in vivo.
Collapse
Affiliation(s)
- Philip Bardelang
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Ewan J. Murray
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Isobel Blower
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Sara Zandomeneghi
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alice Goode
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Rohanah Hussain
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Divya Kumari
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Giuliano Siligardi
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Katsuaki Inoue
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Jeni Luckett
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - James Doutch
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, United Kingdom
| | - Jonas Emsley
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Weng C. Chan
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Philip Hill
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Paul Williams
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Boyan B. Bonev
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
2
|
Gillet N, Bartocci A, Dumont E. Assessing the sequence dependence of pyrimidine-pyrimidone (6-4) photoproduct in a duplex double-stranded DNA: A pitfall for microsecond range simulation. J Chem Phys 2021; 154:135103. [PMID: 33832258 DOI: 10.1063/5.0041332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Sequence dependence of the (6-4) photoproduct conformational landscape when embedded in six 25-bp duplexes is evaluated along extensive unbiased and enhanced (replica exchange with solute tempering, REST2) molecular dynamics simulations. The structural reorganization as the central pyrimidines become covalently tethered is traced back in terms of non-covalent interactions, DNA bending, and extrusion of adenines of the opposite strands. The close sequence pattern impacts the conformational landscape around the lesion, inducing different upstream and downstream flexibilities. Moreover, REST2 simulations allow us to probe structures possibly important for damaged DNA recognition.
Collapse
Affiliation(s)
- Natacha Gillet
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, F69364 Lyon, France
| | - Alessio Bartocci
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, F69364 Lyon, France
| | - Elise Dumont
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, F69364 Lyon, France
| |
Collapse
|
3
|
Peesapati S, Sajeevan KA, Patel SK, Roy D. Relation between glycosidic linkage, structure and dynamics of α- and β-glucans in water. Biopolymers 2021; 112:e23423. [PMID: 33572006 DOI: 10.1002/bip.23423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 11/09/2022]
Abstract
In a molecular dynamics simulation study of several oligosaccharides comprising of the very basic building block of carbohydrate, the α- or β-d glucopyranose units, linked by any one of the 1-3/1-4 or 1-6 glycosidic linkages, we compare and contrast their structural and dynamical properties. Results indicate that the litheness of the oligosaccharide chain is noticeably controlled by the composition, anomeric nature and glycosidic linkage type of the units. In mixed β 1-4/1-3 d-glucopyranosides, as those found in oats and barley, the ratio of the β 1-4 and β 1-3 linked residues is crucial in determining the structural and dynamical attributes. Principal component analysis (PCA) using the internal coordinates of torsion angles subtended by glycosidic oxygen atoms and subsequent K-means clustering of the dynamical space spanned by PC1 to PC2 point to the dynamical and structural disparity in the various types of oligosaccharides studied. The properties simulated in this work are meant to provide a systematic yet comparative understanding of the importance of linkage and anomericity on the oligosaccharide chain properties and are in line with some experimental structural attributes.
Collapse
Affiliation(s)
- Sruthi Peesapati
- Department of Chemistry, Birla Institute of Technology and Science- Pilani, Hyderabad, Telangana, India
| | - Karuna Anna Sajeevan
- Department of Chemistry, Birla Institute of Technology and Science- Pilani, Hyderabad, Telangana, India
| | - Siddhant Kumar Patel
- Department of Chemistry, Birla Institute of Technology and Science- Pilani, Hyderabad, Telangana, India
| | - Durba Roy
- Department of Chemistry, Birla Institute of Technology and Science- Pilani, Hyderabad, Telangana, India
| |
Collapse
|
4
|
Hlozek J, Ravenscroft N, Kuttel MM. Modeling the conformations of Neisseria meningitidis serogroup a CPS and a carba-analogue: Implications for vaccine development. Carbohydr Res 2019; 486:107838. [PMID: 31654945 DOI: 10.1016/j.carres.2019.107838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
Abstract
Neisseria meningitidis is a major cause of bacterial meningitis worldwide, especially in Africa. The capsular polysaccharide is the main virulence factor and the target antigen for polysaccharide- and conjugate vaccines. Three tetravalent conjugate vaccines against serogroups A, C, Y and W have been licensed and the monovalent MenAfriVac® was introduced to address the high burden of serogroup A disease in the Meningitis Belt of sub-Saharan Africa. Three of these four vaccines are lyophilized due to the instability of the serogroup A antigen (MenA) in aqueous solution, resulting in a two vial presentation with concomitant additional costs for storage and distribution. Replacement of the saccharide ring oxygen with a methylene group is a promising approach to preparing a stable oligosaccharide MenA analogue (Carba-MenA) vaccine suitable for a liquid formulation. However, to be effective, Carba-MenA must elicit an immune response that is cross-reactive to the native MenA. Here we employ microsecond molecular dynamics simulations of ten repeats of MenA and Carba-MenA to establish that there are significant differences in the conformation and dynamics of these antigens in solution. Carba-MenA has a more random extended, conformation than MenA; MenA has a significant population of compact S-bend conformations that are absent in the analogue. We also find that the disaccharides are poor models of the conformational behaviour of longer chains. This information is relevant for the rational design of optimal analogues for conjugate vaccines.
Collapse
Affiliation(s)
- Jason Hlozek
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Michelle M Kuttel
- Department of Computer Science, University of Cape Town, Rondebosch, 7701, South Africa.
| |
Collapse
|
5
|
Pandey P, Aytenfisu AH, MacKerell AD, Mallajosyula SS. Drude Polarizable Force Field Parametrization of Carboxylate and N-Acetyl Amine Carbohydrate Derivatives. J Chem Theory Comput 2019; 15:4982-5000. [PMID: 31411469 PMCID: PMC6852669 DOI: 10.1021/acs.jctc.9b00327] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, we report the development of Drude polarizable force field parameters for the carboxylate and N-acetyl amine derivatives, extending the functionality of the existing Drude polarizable carbohydrate force field. The force field parameters have been developed in a hierarchical manner, reproducing the quantum mechanical gas-phase properties of small model compounds representing the key functional group in the carbohydrate derivatives, including optimization of the electrostatic and bonded parameters. The optimized parameters were then used to generate the models for carboxylate and N-acetyl amine carbohydrate derivatives. The transferred parameters were further tested and optimized to reproduce crystal geometries and J-coupling data from nuclear magnetic resonance experiments. The parameter development resulted in the incorporation of d-glucuronate, l-iduronate, N-acetyl-d-glucosamine (GlcNAc), and N-acetyl-d-galactosamine (GalNAc) sugars into the Drude polarizable force field. The parameters developed in this study were then applied to study the conformational properties of glycosaminoglycan polymer hyaluronan, composed of d-glucuronate and N-acetyl-d-glucosamine, in aqueous solution. Upon comparing the results from the additive and polarizable simulations, it was found that the inclusion of polarization improved the description of the electrostatic interactions observed in hyaluronan, resulting in enhanced conformational flexibility. The developed Drude polarizable force field parameters in conjunction with the remainder of the Drude polarizable force field parameters can be used for future studies involving carbohydrates and their conjugates in complex, heterogeneous systems.
Collapse
Affiliation(s)
| | - Asaminew H Aytenfisu
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , 20 Penn Street , Baltimore , Maryland 21201 , United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , 20 Penn Street , Baltimore , Maryland 21201 , United States
| | | |
Collapse
|
6
|
Rönnols J, Engström O, Schnupf U, Säwén E, Brady JW, Widmalm G. Inter-residual Hydrogen Bonding in Carbohydrates Unraveled by NMR Spectroscopy and Molecular Dynamics Simulations. Chembiochem 2019; 20:2519-2528. [PMID: 31066963 DOI: 10.1002/cbic.201900301] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Indexed: 12/15/2022]
Abstract
Carbohydrates, also known as glycans in biological systems, are omnipresent in nature where they as glycoconjugates occur as oligo- and polysaccharides linked to lipids and proteins. Their three-dimensional structure is defined by two or three torsion angles at each glycosidic linkage. In addition, transglycosidic hydrogen bonding between sugar residues may be important. Herein we investigate the presence of these inter-residue interactions by NMR spectroscopy in D2 O/[D6 ]DMSO (70:30) or D2 O and by molecular dynamics (MD) simulations with explicit water as solvent for disaccharides with structural elements α-d-Manp-(1→2)-d-Manp, β-d-GlcpNAc-(1→2)-d-Manp, and α-d-Glcp-(1→4)-β-d-Glcp, all of which have been suggested to exhibit inter-residue hydrogen bonding. For the disaccharide β-d-GlcpNAc-(1→2)-β-d-Manp-OMe, the large extent of O5'⋅⋅⋅HO3 hydrogen bonding as seen from the MD simulation is implicitly supported by the 1 H NMR chemical shift and 3 JHO3,H3 value of the hydroxy proton. In the case of α-d-Glcp-(1→4)-β-d-Glcp-OMe, the existence of a transglycosidic hydrogen bond O2'⋅⋅⋅HO3 was proven by the presence of a cross-peak in 1 H,13 C HSQC-TOCSY experiments as a result of direct TOCSY transfer between HO3 of the reducing end residue and H2' (detected at C2') of the terminal residue. The occurrence of inter-residue hydrogen bonding, albeit transient, is judged important for the stabilization of three-dimensional structures, which may be essential in maintaining a conformational state for carbohydrate-protein interactions of glycans to take place in biologically important environments.
Collapse
Affiliation(s)
- Jerk Rönnols
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91, Stockholm, Sweden
| | - Olof Engström
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91, Stockholm, Sweden
| | - Udo Schnupf
- Department of Chemistry and Biochemistry, Bradley University, Peoria, IL, 61625, USA
| | - Elin Säwén
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91, Stockholm, Sweden
| | - John W Brady
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91, Stockholm, Sweden
| |
Collapse
|
7
|
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces Potsdam Germany
| | - Peter H. Seeberger
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces Potsdam Germany
- Institute of Chemistry and BiochemistryFreie Universität Berlin Berlin Germany
| | - Martina Delbianco
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces Potsdam Germany
| |
Collapse
|
8
|
Lee J, Pothula KR, Kleinekathöfer U, Im W. Simulation Study of Occk5 Functional Properties in Pseudomonas aeruginosa Outer Membranes. J Phys Chem B 2018; 122:8185-8192. [DOI: 10.1021/acs.jpcb.8b07109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Joonseong Lee
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Karunakar R. Pothula
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|