1
|
Evstigneev MP, Degtyar AD, Lantushenko AO. The Correlated States Theory of the Hydrophobic Effect. J Phys Chem B 2025. [PMID: 40368872 DOI: 10.1021/acs.jpcb.5c01214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Starting from Frank and Evans' "iceberg" model of hydrophobic hydration of small molecules (the "microscopic" hydrophobic effect, HE) published in 1945, much has been done with respect to understanding the nature of HE and elaborating a quantitative theory able to describe the thermodynamic profile (the "signature" of HE) for the large volume of experimental data accumulated to date. Generally, three sets of approaches addressing this issue were suggested, ranging from the approval of the central role of the water shell to the complete denial of its role, with the focus placed on the solute and its interactions with surrounding water. For this reason, some controversy is still present in understanding the fundamental nature of HE, even at the "microscopic" scale. Nevertheless, the general tendency of the past decade seems to have shifted toward a greater role of the water environment in determining the thermodynamic profile of HE, with a designated place for solute-water interactions as a fine-tuning of thermodynamic observables. In the present work, we developed a novel view on HE at the microscopic scale, appearing as a consequence of solute-water correlated translational and orientational vibration motion, emerging as a new property of hydrophobic hydration/solvation (the Correlated States Theory of HE). We built a fully analytical description of this process, which has enabled us to quantify the "signature" of HE for extended thermodynamic data sets without employing molecular simulations or any numerical functions in the core of the theory. As a consequence, our approach provides a self-consistent view on the known major experimental manifestations of HE across an extended temperature range, addresses some controversial issues existing to date, and creates a new augmentation to current knowledge. Most importantly, the suggested approach offers a paradigm shift from the currently dominating views on HE as a consequence of water-water interactions and the "excluded volume effect" toward the central role of solute-water interactions, and provides the first nonempirical proof of the validity of SASA-based computational models of hydrophobic hydration/solvation, which have been utilized on an empirical basis for more than 40 years.
Collapse
Affiliation(s)
- Maxim P Evstigneev
- Institute for Advanced Studies, Sevastopol State University, 33 Universitetskaya Street, Sevastopol 299053, Russian Federation
| | - Alexei D Degtyar
- Institute for Advanced Studies, Sevastopol State University, 33 Universitetskaya Street, Sevastopol 299053, Russian Federation
| | - Anastasia Olegovna Lantushenko
- Institute for Advanced Studies, Sevastopol State University, 33 Universitetskaya Street, Sevastopol 299053, Russian Federation
| |
Collapse
|
2
|
Tonti L, Floris FM. Hydrophilic Versus Hydrophobic Coupling in the Pressure Dependence of the Chemical Potential of Alkali Metal and Halide Ions in Water. J Phys Chem B 2022; 126:9325-9338. [PMID: 36326490 PMCID: PMC9677433 DOI: 10.1021/acs.jpcb.2c02373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We computed the chemical potential for some alkali metal ions (K+, Rb+, and Cs+) and two halide ions (Br- and I-) in aqueous solution at ambient T and various pressures in the range 1-8000 atm. Results were obtained from classic Monte Carlo simulations in the NPT ensemble by means of the free energy perturbation method. Here, the chemical potential is computed as the sum of a term relative to a Lennard-Jones solute and a term relative to the process in which this solute is transformed into the ion. Hydrophobic and hydrophilic features of these two components of the chemical potential show opposite behaviors under isothermal compression. The increase in pressure determines an increase in the hydrophobic component, which becomes more positive with a stronger effect for larger ions. Correspondingly, the values of the hydrophilic component become more negative for alkali ions, whereas they are only slightly affected by compression for halide ions. Hydrophobic-hydrophilic quasi-compensation in the slopes is observed for Rb+. For a smaller ion, such as K+, the dependence on pressure of the hydrophilic component is slightly dominant. For a larger ion, as observed in the cases of Cs+, Br-, and I-, the hydrophobic component assumes the determinant role. Pressure dependence of the chemical potential is little affected by corrections introduced for molecular potential truncation. This view can change for possible boundary artifacts that could have affected the static electrostatic potential. Some inference is obtained from comparison with experimental data at 1 atm on the free energy of hydration. Discrepancies show the characteristic asymmetry between cations and anions. The further addition of a correction based on the static potential significantly reduces these discrepancies with important error cancellation on the sum of chemical potentials of ions of opposite charge. The correction is applied also at higher pressures, and results are compared with those obtained by adding an alternative correction that is based on the water number density. Regardless of the ion, changes of the chemical potential induced by an increase in pressure appear to be dominated by the hydrophobic component, in particular when using the alternative correction. For bromide and iodide electrolytes, the two corrections give chemical potentials in good agreement.
Collapse
Affiliation(s)
- Luca Tonti
- Department
of Chemical Engineering, The University
of Manchester, M13 9PLManchester, U.K.,
| | - Franca Maria Floris
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via Giuseppe
Moruzzi 13, 56124Pisa, Italy,
| |
Collapse
|
3
|
Cerdeiriña CA. Water's Unusual Thermodynamics in the Realm of Physical Chemistry. J Phys Chem B 2022; 126:6608-6613. [PMID: 36001372 PMCID: PMC9797112 DOI: 10.1021/acs.jpcb.2c05274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2022] [Indexed: 12/31/2022]
Abstract
While it is known since the early work by Edsall, Frank and Evans, Kauzmann, and others that the thermodynamics of solvation of nonpolar solutes in water is unusual and has implications for the thermodynamics of protein folding, only recently have its connections with the unusual temperature dependence of the density of solvent water been illuminated. Such density behavior is, in turn, one of the manifestations of a nonstandard thermodynamic pattern contemplating a second, liquid-liquid critical point at conditions of temperature and pressure at which water exists as a deeply supercooled liquid. Recent experimental and computational work unambiguously points toward the existence of such a critical point, thereby providing concrete answers to the questions posed by the 1976 pioneering experiments by Speedy and Angell and the associated "liquid-liquid transition hypothesis" posited in 1992 by Stanley and co-workers. Challenges of this phenomenology to the branch of Statistical Mechanics remain.
Collapse
Affiliation(s)
- Claudio A. Cerdeiriña
- Departamento de Física Aplicada, Universidad de Vigo—Campus del Agua, Ourense 32004, Spain
| |
Collapse
|
4
|
Cerdeiriña CA, González-Salgado D. Temperature, Pressure, and Length-Scale Dependence of Solvation in Water-like Solvents. II. Large Solvophovic Solutes. J Phys Chem B 2021; 125:8175-8184. [PMID: 34269575 DOI: 10.1021/acs.jpcb.1c04395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We use molecular simulation to determine solvation free energies, isochoric solvation energies and entropies, isobaric solvation enthalpies and entropies, partial molecular volumes, and isothermal density derivatives of the solvation free energy as a function of temperature and pressure for hard-sphere solutes with diameters ranging from 4 to 36 Å in TIP4P/2005 and Jagla water-like solvents exhibiting unusual thermodynamics. An important piece of our discussion focuses on the nanometer-sized solutes, for which simulation results are found to be accounted for by the most basic classical thermodynamic treatment contemplating bulk and interfacial contributions to the solvation free energy. Thus, since water's liquid-vapor surface tension is only special inasmuch as it takes unusually large values, solvent's water-like unusual thermodynamics manifests through a term proportional to the pressure in the solvation free energy. As a result, such solvent's unusual thermodynamics is found to be relevant to the temperature and pressure dependence of the isochoric solvation energy and entropy as well as to the isothermal density derivative of the solvation free energy. This sharply contrasts with the findings of the first part of this series indicating that the solvation free energy of small hard spheres responds to temperature and pressure changes as solvent's density does, with such a contrasting picture embodying a "pressure-density dichotomy." As for the length-scale dependence, we find the zero nominal pressure and the solvent's temperature of the maximum density as singular conditions for cavity surface-area size scaling of large solutes to occur for all solvation quantities. We finally argue that the overall study undertaken in this series suggests that water's unusual thermodynamics may be relevant to the thermodynamic stability of clusters of solvophobic units in the temperature-pressure plane. Some comments on the role of solute-solvent attractive interactions are also depicted.
Collapse
Affiliation(s)
- Claudio A Cerdeiriña
- Departamento de Física Aplicada, Universidad de Vigo-Campus Del Agua, Ourense 32004, Spain
| | - Diego González-Salgado
- Departamento de Física Aplicada, Universidad de Vigo-Campus Del Agua, Ourense 32004, Spain
| |
Collapse
|
5
|
Cerdeiriña CA, González-Salgado D. Temperature, Pressure, and Length-Scale Dependence of Solvation in Water-like Solvents. I. Small Solvophobic Solutes. J Phys Chem B 2020; 125:297-306. [DOI: 10.1021/acs.jpcb.0c09569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Claudio A. Cerdeiriña
- Departamento de Física Aplicada, Universidad de Vigo, Campus del Agua, Ourense 32004, Spain
| | - Diego González-Salgado
- Departamento de Física Aplicada, Universidad de Vigo, Campus del Agua, Ourense 32004, Spain
| |
Collapse
|
6
|
Bogunia M, Makowski M. Influence of Ionic Strength on Hydrophobic Interactions in Water: Dependence on Solute Size and Shape. J Phys Chem B 2020; 124:10326-10336. [PMID: 33147018 PMCID: PMC7681779 DOI: 10.1021/acs.jpcb.0c06399] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Hydrophobicity is a phenomenon of
great importance in biology,
chemistry, and biochemistry. It is defined as the interaction between
nonpolar molecules or groups in water and their low solubility. Hydrophobic
interactions affect many processes in water, for example, complexation,
surfactant aggregation, and coagulation. These interactions play a
pivotal role in the formation and stability of proteins or biological
membranes. In the present study, we assessed the effect of ionic strength,
solute size, and shape on hydrophobic interactions between pairs of
nonpolar particles. Pairs of methane, neopentane, adamantane, fullerene,
ethane, propane, butane, hexane, octane, and decane were simulated
by molecular dynamics in AMBER 16.0 force field. As a solvent, TIP3P
and TIP4PEW water models were used. Potential of mean force (PMF)
plots of these dimers were determined at four values of ionic strength,
0, 0.04, 0.08, and 0.40 mol/dm3, to observe its impact
on hydrophobic interactions. The characteristic shape of PMFs with
three extrema (contact minimum, solvent-separated minimum, and desolvation
maximum) was observed for most of the compounds for hydrophobic interactions.
Ionic strength affected hydrophobic interactions. We observed a tendency
to deepen contact minima with an increase in ionic strength value
in the case of spherical and spheroidal molecules. Additionally, two-dimensional
distribution functions describing water density and average number
of hydrogen bonds between water molecules were calculated in both
water models for adamantane and hexane. It was observed that the density
of water did not significantly change with the increase in ionic strength,
but the average number of hydrogen bonds changed. The latter tendency
strongly depends on the water model used for simulations.
Collapse
Affiliation(s)
- Małgorzata Bogunia
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Mariusz Makowski
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
7
|
|
8
|
Ashbaugh HS, Bukannan H. Temperature, Pressure, and Concentration Derivatives of Nonpolar Gas Hydration: Impact on the Heat Capacity, Temperature of Maximum Density, and Speed of Sound of Aqueous Mixtures. J Phys Chem B 2020; 124:6924-6942. [PMID: 32692557 DOI: 10.1021/acs.jpcb.0c04035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hydrophobic effect is an umbrella term encompassing a number of solvation phenomena associated with solutions of nonpolar species in water, including the following: a meager solubility opposed by entropy at room temperature; large positive hydration heat capacities; positive shifts in the temperature of maximum density of aqueous mixtures; increases in the speed of sound of dilute aqueous mixtures; and negative volumes of association between interacting solutes. Here we present a molecular simulation study of nonpolar gas hydration over the temperature range 273.15-373.15 K and a pressure range -500 to 1000 bar to investigate the interrelationships between distinct hydrophobic phenomena. We develop a new free energy correlation for the solute chemical potentials founded on the Tait equation description of the equation-of-state of liquid water. This analytical correlation is shown to provide a quantitatively accurate description of nonpolar gas hydration over the entire range of thermodynamic state points simulated, with an error of ∼0.02 kBT or lower in the fitted chemical potentials. Our simulations and the correlation accurately reproduce many of the available experimental results for the hydration of the solutes examined here. Moreover, the correlation reproduces the characteristic entropies of hydration, temperature dependence of the hydration heat capacity, perturbations in the temperature of maximum density, and changes in the speed of sound. While negative volumes of association result from pairwise interactions in solution, beyond the limits of our simulations performed at infinite dilution, we discuss how our correlation could be supplemented with second virial coefficient information to expand to finite concentrations. In total, this work demonstrates that many distinct phenomena associated with the hydrophobic effect can be captured within a single thermodynamically consistent correlation for solute hydration free energies.
Collapse
Affiliation(s)
- Henry S Ashbaugh
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Hussain Bukannan
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
9
|
Islam N, Flint M, Rick SW. Water hydrogen degrees of freedom and the hydrophobic effect. J Chem Phys 2019; 150:014502. [DOI: 10.1063/1.5053239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Naeyma Islam
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148, USA
| | - Mahalia Flint
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148, USA
| | - Steven W. Rick
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148, USA
| |
Collapse
|