1
|
Mosely JJ, Tschumper GS. Probing the Effects of Size and Charge on the Monohydration and Dihydration of SiF 5- and SiF 62- via Comparisons with BF 4- and PF 6. J Phys Chem A 2024; 128:5637-5645. [PMID: 38976798 DOI: 10.1021/acs.jpca.4c03430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
This study systematically examines the interactions of the trigonal bipyramidal silicon pentafluoride and octahedral silicon hexafluoride anions with either one or two water molecules, (SiF5-(H2O)n and SiF62-(H2O)n, respectively, where n = 1, 2). Full geometry optimizations and subsequent harmonic vibrational frequency computations are performed using the CCSD(T) ab initio method with a triple-ζ correlation consistent basis set augmented with diffuse functions on all non-hydrogen atoms (cc-pVTZ for H and aug-cc-pVTZ for Si, O, and F; denoted as haTZ). Two monohydrate and six dihydrate minima have been identified for the SiF5-(H2O)n systems, whereas one monohydrate and five dihydrate minima have been identified for the SiF62-(H2O)n systems. Both monohydrated anions have a minimum in which the water molecule adopts a symmetric double ionic hydrogen bond (DIHB) motif with C2v symmetry. However, a second unique monohydrate minimum has been identified for SiF5- in which the water molecule adopts an asymmetric DIHB motif along the edge of the trigonal bipyramidal anion between one axial and one equatorial F atom. This Cs structure is more than 2 kcal mol-1 lower in energy than the C2v local minimum at the CCSD(T)/haTZ level of theory. While the interactions between the solvent and ionic solute are quite strong for the monohydrated anions (electronic dissociation energies of ≈12 and ≈24 kcal mol-1 for the SiF5-(H2O)1 and SiF62-(H2O)1 global minima, respectively), these values are nearly perfectly doubled for the dihydrates, with the lowest-energy SiF5-(H2O)2 and SiF62-(H2O)2 minima exhibiting dissociation energies of ≈24 and ≈47 kcal mol-1, respectively. Structures that form hydrogen bonds between the solvating water molecules also exhibit the largest shifts in the harmonic OH stretching frequencies for the waters of hydration. These shifts can exceed -100 cm-1 for the SiF5-(H2O)2 minimum and -300 cm-1 for the SiF62-(H2O)2 minimum relative to an isolated H2O molecule at the CCSD(T)/haTZ level of theory. This work also corrects the OH stretching frequency shifts for two dihydrate minima of PF6- that were previously erroneously reported ( J. Phys. Chem. A 2020, 124, 8744-8752, DOI: 10.1021/acs.jpca.0c06466).
Collapse
Affiliation(s)
- Jacquelyn J Mosely
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| | - Gregory S Tschumper
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| |
Collapse
|
2
|
Panuszko A, Śmiechowski M, Pieloszczyk M, Malinowski A, Stangret J. Weakly Hydrated Solute of Mixed Hydrophobic-Hydrophilic Nature. J Phys Chem B 2024; 128:6352-6361. [PMID: 38913837 PMCID: PMC11228977 DOI: 10.1021/acs.jpcb.4c02429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024]
Abstract
Infrared (IR) spectroscopy is a commonly used and invaluable tool in studies of solvation phenomena in aqueous solutions. Concurrently, density functional theory calculations and ab initio molecular dynamics simulations deliver the solvation shell picture at the molecular detail level. The mentioned techniques allowed us to gain insights into the structure and energy of the hydrogen bonding network of water molecules around methylsulfonylmethane (MSM). In the hydration sphere of MSM, there are two types of populations of water molecules: a significant share of water molecules weakly bonded to the sulfone group and a smaller share of water molecules strongly bonded to each other around the methyl groups of MSM. The very weak hydrogen bond of water molecules with the hydrophilic group causes the extended network of water hydrogen bonds to be not "anchored" on the sulfone group, and consequently, the MSM hydration shell is labile.
Collapse
Affiliation(s)
- Aneta Panuszko
- Department of Physical Chemistry, Faculty
of Chemistry, Gdańsk University of
Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Maciej Śmiechowski
- Department of Physical Chemistry, Faculty
of Chemistry, Gdańsk University of
Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Maciej Pieloszczyk
- Department of Physical Chemistry, Faculty
of Chemistry, Gdańsk University of
Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Adrian Malinowski
- Department of Physical Chemistry, Faculty
of Chemistry, Gdańsk University of
Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Janusz Stangret
- Department of Physical Chemistry, Faculty
of Chemistry, Gdańsk University of
Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
3
|
Balicki M, Śmiechowski M. Hydration of N-Hydroxyurea from Ab Initio Molecular Dynamics Simulations. Molecules 2024; 29:2435. [PMID: 38893311 PMCID: PMC11173572 DOI: 10.3390/molecules29112435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
N-Hydroxyurea (HU) is an important chemotherapeutic agent used as a first-line treatment in conditions such as sickle cell disease and β-thalassemia, among others. To date, its properties as a hydrated molecule in the blood plasma or cytoplasm are dramatically understudied, although they may be crucial to the binding of HU to the radical catalytic site of ribonucleotide reductase, its molecular target. The purpose of this work is the comprehensive exploration of HU hydration. The topic is studied using ab initio molecular dynamic (AIMD) simulations that apply a first principles representation of the electron density of the system. This allows for the calculation of infrared spectra, which may be decomposed spatially to better capture the spectral signatures of solute-solvent interactions. The studied molecule is found to be strongly hydrated and tightly bound to the first shell water molecules. The analysis of the distance-dependent spectra of HU shows that the E and Z conformers spectrally affect, on average, 3.4 and 2.5 of the closest H2O molecules, respectively, in spheres of radii of 3.7 Å and 3.5 Å, respectively. The distance-dependent spectra corresponding to these cutoff radii show increased absorbance in the red-shifted part of the water OH stretching vibration band, indicating local enhancement of the solvent's hydrogen bond network. The radially resolved IR spectra also demonstrate that HU effortlessly incorporates into the hydrogen bond network of water and has an enhancing effect on this network. Metadynamics simulations based on AIMD methodology provide a picture of the conformational equilibria of HU in solution. Contrary to previous investigations of an isolated HU molecule in the gas phase, the Z conformer of HU is found here to be more stable by 17.4 kJ·mol-1 than the E conformer, pointing at the crucial role that hydration plays in determining the conformational stability of solutes. The potential energy surface for the OH group rotation in HU indicates that there is no intramolecular hydrogen bond in Z-HU in water, in stark contrast to the isolated solute in the gas phase. Instead, the preferred orientation of the hydroxyl group is perpendicular to the molecular plane of the solute. In view of the known chaotropic effect of urea and its N-alkyl-substituted derivatives, N-hydroxyurea emerges as a unique urea derivative that exhibits a kosmotropic ordering of nearby water. This property may be of crucial importance for its binding to the catalytic site of ribonucleotide reductase with a concomitant displacement of a water molecule.
Collapse
Affiliation(s)
| | - Maciej Śmiechowski
- Department of Physical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland;
| |
Collapse
|
4
|
Olive LN, Dornshuld EV, Schaefer HF, Tschumper GS. Competition between Solvent···Solvent and Solvent···Solute Interactions in the Microhydration of the Tetrafluoroborate Anion, BF 4-(H 2O) n=1,2,3,4. J Phys Chem A 2023; 127:8806-8820. [PMID: 37774368 DOI: 10.1021/acs.jpca.3c04014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
This study systematically examines the interactions of the tetrafluoroborate anion (BF4-) with up to four water molecules (BF4-(H2O)n=1,2,3,4). Full geometry optimizations and subsequent harmonic vibrational frequency computations are performed using a variety of density functional theory (DFT) methods (B3LYP, B3LYP-D3BJ, and M06-2X) and the MP2 ab initio method with a triple-ζ correlation consistent basis set augmented with diffuse functions on all non-hydrogen atoms (cc-pVTZ for H and aug-cc-pVTZ for B, O, and F; denoted as haTZ). Optimized structures and harmonic vibrational frequencies were also obtained with the CCSD(T) ab initio method and the haTZ basis set for the mono- and dihydrate (n = 1, 2) structures. The 2-body:Many-body (2b:Mb) technique, in which CCSD(T) computations capture the 1- and 2-body contributions to the interactions and MP2 computations recover all higher-order contributions, was used to extend these demanding computations to the tri- and tetrahydrate (n = 3, 4) systems. Four, five, and eight new stationary points have been identified for the di-, tri-, and tetrahydrate systems, respectively. The global minimum of the monohydrate adopts a symmetric double ionic hydrogen bond motif with C2v symmetry and an electronic dissociation energy of 13.17 kcal mol-1 at the CCSD(T)/haTZ level of theory. This strong solvent···solute interaction, however, competes with solute···solute interactions in the lowest-energy BF4-(H2O)n=2,3,4 minima that are not seen in the other di-, tri-, or tetrahydrate minima. The latter interactions help increase the 2b:Mb dissociation energies to more than 26, 41, and 51 kcal mol-1 for n = 2, 3, and 4, respectively. Structures that form hydrogen bonds between the solvating water molecules also exhibit the largest shifts in the harmonic OH stretching frequencies for the waters of hydration. These shifts can exceed -280 cm-1 relative to an isolated H2O molecule at the 2b:Mb/haTZ level of theory.
Collapse
Affiliation(s)
- Laura N Olive
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Eric V Dornshuld
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Gregory S Tschumper
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
5
|
Coe JV, Dressick WJ, Turro C. Etalon-Assisted Determination of the Complex Index of Refraction of a Solution for the Study of Strong Cavity-Vibrational Coupling of PF 6- in Acetonitrile. J Phys Chem B 2023; 127:980-995. [PMID: 36694956 DOI: 10.1021/acs.jpcb.2c07787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A new method is established using an etalon cavity to assist in the determination of the wavelength-dependent complex index of refraction of a solution throughout the mid-infrared range. The results are used to study the cavity-vibration polaritons of PF6- in acetonitrile. Mixed states are formed by placing solution inside a pair of parallel plate mirrors with a wavelength-scale spacing, i.e., within an etalon, such that there are cavity states that are angle-tuned into resonance with the strong P-F vibrations. The dominant ν3 vibrations of PF6- consist of nearly triply degenerate oscillations of the partial-positively charged phosphorous against antisymmetric concerted motions of different sets of fluorine atoms with partial negative charges. These vibrations are dominant even though the solute is 29 times less concentrated than the solvent on a molar basis. The first part of the paper describes the method of determining the complex index of refraction of the solution from a combination of etalon transmission maxima and the attenuated total reflection (ATR) absorption spectrum of the solution. The results are presented as an analytical function including a sum of 37 vibrational contributions. Absolute integrated isolated band intensities were determined to be 463 ± 4, 462 ± 7, and 266 ± 4 km/mol for the three ν3 PF6- vibrations at 841.4, 847.4, and 854.0 cm-1, respectively, which sum to 1191 ± 9 km/mol for the ν3 band. Then, the results are used to simulate the measured etalon transmission using the transfer matrix (TM) method with and without the ν3 target vibrations. The etalon transmission simulations reconstruct the position of cavity modes in the absence of target vibrations. They provide input data for the testing of simple quantum mechanical models for the interaction of vibrations with cavity modes and the interactions of vibrations with other vibrations within the molecule and between solute and solvent. The model shows that the nearly degenerate ν3 vibrations interact with each other with a vibration-vibration coupling of 33 ± 5 cm-1. This is comparable to the cavity-vibration coupling of 30.4 ± 2.9 cm-1 of the two strongest vibrations of PF6-.
Collapse
Affiliation(s)
- James V Coe
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210-1173, United States
| | - Walter J Dressick
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210-1173, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210-1173, United States
| |
Collapse
|
6
|
Śmiechowski M. Molecular level interpretation of excess infrared spectroscopy. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Abdo YA, Tschumper GS. Competition between Solvent-Solvent and Solvent-Solute Interactions in the Microhydration of the Hexafluorophosphate Anion, PF 6-(H 2O) n=1,2. J Phys Chem A 2020; 124:8744-8752. [PMID: 32993285 DOI: 10.1021/acs.jpca.0c06466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study systematically examines the interactions of the hexafluorophosphate anion (PF6-) with one or two solvent water molecules (PF6-(H2O)n where n = 1, 2). Full geometry optimizations and subsequent harmonic vibrational frequency computations are performed on each stationary point using a variety of common density functional theory methods (B3LYP, B3LYP-D3, M06-2X, and ωB97XD) and the MP2 and CCSD(T) ab initio methods with a triple-ζ correlation consistent basis set augmented with diffuse functions on all non-hydrogen atoms (cc-pVTZ for H and aug-cc-pVTZ for P, O, and F; denoted as haTZ). Five new stationary points of PF6-(H2O)2 have been identified, one of which has an electronic energy of approximately 2 kcal mol-1 lower than the only other dihydrate structure reported for this system. The CCSD(T) computations also reveal that the detailed interactions between PF6- and H2O can be quite difficult to model reliably, with some methods struggling to correctly characterize stationary points for n = 1 or accurately reproduce the vibrational frequency shifts induced by the formation of the hydrated complex. Although the interactions between the solvent and ionic solute are quite strong (CCSD(T) electronic dissociation energy ≈10 kcal mol-1 for the monohydrate minimum), the solvent-solvent interactions in the lowest-energy PF6-(H2O)2 minimum give rise to appreciable cooperative effects not observed in the other dihydrate minima. In addition, this newly identified structure exhibits the largest frequency shifts in the OH stretching vibrations for the waters of hydration (with Δω exceeding -100 cm-1 relative to the values for an isolated H2O molecule).
Collapse
Affiliation(s)
- Yasmeen A Abdo
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| | - Gregory S Tschumper
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| |
Collapse
|
8
|
Houriez C, Réal F, Vallet V, Mautner M, Masella M. Ion hydration free energies and water surface potential in water nano drops: The cluster pair approximation and the proton hydration Gibbs free energy in solution. J Chem Phys 2019; 151:174504. [PMID: 31703526 DOI: 10.1063/1.5109777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We estimate both single ion hydration Gibbs free energies in water droplets, comprising from 50 to 1000 molecules, and water/vacuum surface potentials in pure water droplets comprising up to 10 000 molecules. We consider four ions, namely, Li+, NH4 +, F-, and Cl-, and we model their hydration process and water/water interactions using polarizable force fields based on an induced point dipole approach. We show both ion hydration Gibbs free energies and water surface potentials to obey linear functions of the droplet radius as soon as droplets comprising a few hundred water molecules. Moreover, we also show that the differences in anion/cation hydration Gibbs free energies in droplets obey a different regime in large droplets than in small clusters comprising no more than six water molecules, in line with the earlier results computed from standard additive point charge force fields. Hence, both point charge and more sophisticated induced point dipole molecular modeling approaches suggest that methods considering only the thermodynamical properties of small ion/water clusters to estimate the absolute proton hydration Gibbs free energy in solution are questionable. In particular, taking into account the data of large ion/water droplets may yield a proton hydration Gibbs free energy in solution value to be shifted by several kBT units compared to small clusters-based approaches.
Collapse
Affiliation(s)
- Céline Houriez
- MINES ParisTech, PSL Research University, CTP - Centre Thermodynamique des Procédés, 35 rue Saint-Honoré, 77300 Fontainebleau, France
| | - Florent Réal
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Valérie Vallet
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Michael Mautner
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA and Department of Chemistry, University of Canterbury, Christchurch 8001, New Zealand
| | - Michel Masella
- Laboratoire de Biologie Structurale et Radiobiologie, Service de Bioénergétique, Biologie Structurale et Mécanismes, Institut Joliot, CEA Saclay, F-91191 Gif sur Yvette Cedex, France
| |
Collapse
|
9
|
Panuszko A, Bruździak P, Śmiechowski M, Stasiulewicz M, Stefaniak J, Stangret J. DMSO hydration redefined: Unraveling the hydrophobic hydration of solutes with a mixed hydrophilic–hydrophobic characteristic. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111661] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Leśniewski M, Śmiechowski M. Communication: Inside the water wheel: Intrinsic differences between hydrated tetraphenylphosphonium and tetraphenylborate ions. J Chem Phys 2018; 149:171101. [DOI: 10.1063/1.5056237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mateusz Leśniewski
- Department of Physical Chemistry, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Maciej Śmiechowski
- Department of Physical Chemistry, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|