1
|
Vahid H, Scacchi A, Sammalkorpi M, Ala-Nissila T. Adsorption of polyelectrolytes in the presence of varying dielectric discontinuity between solution and substrate. J Chem Phys 2024; 161:134907. [PMID: 39360687 DOI: 10.1063/5.0223124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
We examine the interactions between polyelectrolytes (PEs) and uncharged substrates under conditions corresponding to a dielectric discontinuity between the aqueous solution and the substrate. To this end, we vary the relevant system characteristics, in particular the substrate dielectric constant ɛs under different salt conditions. We employ coarse-grained molecular dynamics simulations with rodlike PEs in salt solutions with explicit ions and implicit water solvent with dielectric constant ɛw = 80. As expected, at low salt concentrations, PEs are repelled from the substrates with ɛs < ɛw but are attracted to substrates with a high dielectric constant due to image charges. This attraction considerably weakens for high salt and multivalent counterions due to enhanced screening. Furthermore, for monovalent salt, screening enhances adsorption for weakly charged PEs, but weakens it for strongly charged ones. Meanwhile, multivalent counterions have little effect on weakly charged PEs, but prevent adsorption of highly charged PEs, even at low salt concentrations. We also find that correlation-induced charge inversion of a PE is enhanced close to the low dielectric constant substrates, but suppressed when the dielectric constant is high. To explore the possibility of a PE monolayer formation, we examine the interaction of a pair of like-charged PEs aligned parallel to a high dielectric constant substrate with ɛs = 8000. Our main conclusion is that monolayer formation is possible only for weakly charged PEs at high salt concentrations of both monovalent and multivalent counterions. Finally, we also consider the energetics of a PE approaching the substrate perpendicular to it, in analogy to polymer translocation. Our results highlight the complex interplay between electrostatic and steric interactions and contribute to a deeper understanding of PE-substrate interactions and adsorption at substrate interfaces with varying dielectric discontinuities from solution, ubiquitous in biointerfaces, PE coating applications, and designing adsorption setups.
Collapse
Affiliation(s)
- Hossein Vahid
- Department of Applied Physics, Aalto University, P.O. Box 15600, FI-00076 Aalto, Finland
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Alberto Scacchi
- Department of Applied Physics, Aalto University, P.O. Box 15600, FI-00076 Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Department of Mechanical and Materials Engineering, University of Turku, Vesilinnantie 5, FI-20014 Turku, Finland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Tapio Ala-Nissila
- Department of Applied Physics, Aalto University, P.O. Box 15600, FI-00076 Aalto, Finland
- Quantum Technology Finland Center of Excellence, Department of Applied Physics, Aalto University, P.O. Box 15600, FI-00076 Aalto, Finland
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough Leicestershire LE11 3TU, United Kingdom
| |
Collapse
|
2
|
Presnova GV, Presnov DE, Ulyashova MM, Tsiniaikin II, Trifonov AS, Skorb EV, Krupenin VA, Snigirev OV, Rubtsova MY. Ultrasensitive Detection of PSA Using Antibodies in Crowding Polyelectrolyte Multilayers on a Silicon Nanowire Field-Effect Transistor. Polymers (Basel) 2024; 16:332. [PMID: 38337221 DOI: 10.3390/polym16030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Immunosensors based on field-effect transistors with nanowire channels (NWFETs) provide fast and real-time detection of a variety of biomarkers without the need for additional labels. The key feature of the developed immunosensor is the coating of silicon NWs with multilayers of polyelectrolytes (polyethylenimine (PEI) and polystyrene sulfonate (PSS)). By causing a macromolecular crowding effect, it ensures the "soft fixation" of the antibodies into the 3-D matrix of the oppositely charged layers. We investigated the interaction of prostate-specific antigen (PSA), a biomarker of prostate cancer, and antibodies adsorbed in the PEI and PSS matrix. In order to visualize the formation of immune complexes between polyelectrolyte layers using SEM and AFM techniques, we employed a second clone of antibodies labeled with gold nanoparticles. PSA was able to penetrate the matrix and concentrate close to the surface layer, which is crucial for its detection on the nanowires. Additionally, this provides the optimal orientation of the antibodies' active centers for interacting with the antigen and improves their mobility. NWFETs were fabricated from SOI material using high-resolution e-beam lithography, thin film vacuum deposition, and reactive-ion etching processes. The immunosensor was characterized by a high sensitivity to pH (71 mV/pH) and an ultra-low limit of detection (LOD) of 0.04 fg/mL for PSA. The response of the immunosensor takes less than a minute, and the measurement is carried out in real time. This approach seems promising for further investigation of its applicability for early screening of prostate cancer and POC systems.
Collapse
Affiliation(s)
- Galina V Presnova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Denis E Presnov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
- D.V. Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Mariya M Ulyashova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ilia I Tsiniaikin
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Artem S Trifonov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ekaterina V Skorb
- Infochemistry Scientific Center of ITMO University, 191002 Saint Petersburg, Russia
| | - Vladimir A Krupenin
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Oleg V Snigirev
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Maya Yu Rubtsova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
3
|
Baldina AA, Nikolaev KG, Ivanov AS, Nikitina AA, Rubtsova MY, Vorovitch MF, Ishmukhametov AA, Egorov AM, Skorb EV. Immunochemical biosensor for single virus particle detection based on molecular crowding polyelectrolyte system. J Appl Polym Sci 2022. [DOI: 10.1002/app.52360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Anna A. Baldina
- Infochemistry Scientific Center ITMO University Saint Petersburg Russia
| | | | - Artemii S. Ivanov
- Infochemistry Scientific Center ITMO University Saint Petersburg Russia
| | - Anna A. Nikitina
- Infochemistry Scientific Center ITMO University Saint Petersburg Russia
| | - Maya Yu. Rubtsova
- Faculty of Chemistry M.V. Lomonosov Moscow State University Moscow Russia
| | - Mikhail F. Vorovitch
- Chumakov Federal Scientific Center for Research and Development of Immune‐and‐Biological Products of Russian Academy of Sciences Federal State Budgetary Scientific Institution (FSBSI "Chumakov FSC R&D IBP RAS") Moscow Russia
- Institute for Translational Medicine and Biotechnology Sechenov First Moscow State Medical University Moscow Russia
| | - Aydar A. Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune‐and‐Biological Products of Russian Academy of Sciences Federal State Budgetary Scientific Institution (FSBSI "Chumakov FSC R&D IBP RAS") Moscow Russia
- Institute for Translational Medicine and Biotechnology Sechenov First Moscow State Medical University Moscow Russia
| | - Alex M. Egorov
- Faculty of Chemistry M.V. Lomonosov Moscow State University Moscow Russia
- Chumakov Federal Scientific Center for Research and Development of Immune‐and‐Biological Products of Russian Academy of Sciences Federal State Budgetary Scientific Institution (FSBSI "Chumakov FSC R&D IBP RAS") Moscow Russia
| | | |
Collapse
|
4
|
Wang J, Guo M, Luo Y, Shao D, Ge S, Cai L, Xia C, Lam SS. Production of magnetic sodium alginate polyelectrolyte nanospheres for lead ions removal from wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112506. [PMID: 33831760 DOI: 10.1016/j.jenvman.2021.112506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Polyelectrolyte composite nanospheres are relatively new adsorbents which have attracted much attention for their efficient pollutant removal and reuse performance. A novel polyelectrolyte nanosphere with magnetic function (SA@AM) was synthesized via the electrostatic reaction between the polyanionic sodium alginate (SA) and the surface of a prepared terminal amino-based magnetic nanoparticles (AMs). SA@AM showed a size of 15-22 nm with 6.85 emu·g-1 of magnetization value, exhibiting a high adsorption capacity on Pb(II) ions representing a common heavy metal pollutant, with a maximum adsorption capacity of 105.8 mg g-1. The Langmuir isotherm adsorption fits the adsorption curve, indicating uniform adsorption of Pb(II) on the SA@AM surfaces. Repeated adsorption desorption experiments showed that the removal ratio of Pb(II) by SA@AM was more than 76%, illustrating improved regeneration performance. These results provide useful information for the production of bio-based green magnetic nano scale adsorption materials for environmental remediation applications.
Collapse
Affiliation(s)
- Jue Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China; College of Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Ming Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China; College of Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| | - Yonghong Luo
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Dongwei Shao
- College of Mechanical Engineering, Jiamusi University, Jiamusi, Heilongjiang, 154007, China
| | - Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Liping Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Changlei Xia
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Su Shiung Lam
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
5
|
Nikolaev K, Kalmykov EV, Shavronskaya DO, Nikitina AA, Stekolshchikova AA, Kosareva EA, Zenkin AA, Pantiukhin IS, Orlova OY, Skalny AV, Skorb EV. ElectroSens Platform with a Polyelectrolyte-Based Carbon Fiber Sensor for Point-of-Care Analysis of Zn in Blood and Urine. ACS OMEGA 2020; 5:18987-18994. [PMID: 32775900 PMCID: PMC7408235 DOI: 10.1021/acsomega.0c02279] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
In this paper, we describe an electrochemical sensing platform-ElectroSens-for the detection of Zn based on self-assembled polyelectrolyte multilayers on the carbon fiber (CF) electrode surface. The CF-extended surface facilitates the usage of a small volume electrochemical cell (1 mL) without stirring. This approach allows making a low-cost three-electrode platform. Working electrode modification with layer-by-layer assembly of polyethyleneimine (PEI), poly(sodium 4-styrenesulfonate) (PSS), and mercury nitrate layers eliminates solution toxicity and provides stable stripping voltammetry measurements. The stable, robust, sustainable, and even reusable Ag/AgCl reference electrode consists of adsorbed 32 PEI-KCl/PSS-KCl bilayers on the CF/silver paste separated from the outer solution by a polyvinyl chloride membrane. The polyelectrolyte-based sensor interface prevents adsorption of protein molecules from biological liquids on the CF surface that leads to a sensitivity increase of up to 2.2 μA/M for Zn2+ detection and provides a low limit of detection of 4.6 × 10-8 M. The linear range for Zn detection is 1 × 10-7 to 1 × 10-5 M. A portable potentiostat connected via wireless to a smartphone with an android-based software is also provided. The ElectroSens demonstrates reproducibility and repeatability of data for the detection of Zn in blood and urine without the digestion step.
Collapse
|