1
|
Carmona Esteva FJ, Zhang Y, Maginn EJ, Colón YJ. Consistent and reproducible computation of the glass transition temperature from molecular dynamics simulations. J Chem Phys 2024; 161:014108. [PMID: 38949278 DOI: 10.1063/5.0207835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024] Open
Abstract
In many fields, from semiconductors for opto-electronic applications to ionic liquids (ILs) for separations, the glass transition temperature (Tg) of a material is a useful gauge for its potential use in practical settings. As a result, there is a great deal of interest in predicting Tg using molecular simulations. However, the uncertainty and variation in the trend shift method, a common approach in simulations to predict Tg, can be high. This is due to the need for human intervention in defining a fitting range for linear fits of density with temperature assumed for the liquid and glass phases across the simulated cooling. The definition of such fitting ranges then defines the estimate for the Tg as the intersection of linear fits. We eliminate this need for human intervention by leveraging the Shapiro-Wilk normality test and proposing an algorithm to define the fitting ranges and, consequently, Tg. Through this integration, we incorporate into our automated methodology that residuals must be normally distributed around zero for any fit, a requirement that must be met for any regression problem. Consequently, fitting ranges for realizing linear fits for each phase are statistically defined rather than visually inferred, obtaining an estimate for Tg without any human intervention. The method is also capable of finding multiple linear regimes across density vs temperature curves. We compare the predictions of our proposed method across multiple IL and semiconductor molecular dynamics simulation results from the literature and compare other proposed methods for automatically detecting Tg from density-temperature data. We believe that our proposed method would allow for more consistent predictions of Tg. We make this methodology available and open source through GitHub.
Collapse
Affiliation(s)
- Fernando J Carmona Esteva
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Yong Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Edward J Maginn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Yamil J Colón
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
2
|
Frömbgen T, Canongia Lopes JN, Kirchner B, Shimizu K. Unraveling the Morphology of [C nC 1Im]Cl Ionic Liquids Combining Cluster and Aggregation Analyses. J Phys Chem B 2024; 128:3937-3945. [PMID: 38621255 PMCID: PMC11056978 DOI: 10.1021/acs.jpcb.3c08317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024]
Abstract
A characteristic feature of ionic liquids is their nanosegregation, resulting in the formation of polar and nonpolar domains. The influence of increasing the alkyl side chain on the morphology of ionic liquids has been the subject of many studies. Typically, the polar network (charged part of the cation and anion) constitutes a continuous subphase that partially breaks to allow the formation of a nonpolar domain with the increase of the alkyl chain. As the nonpolar network expands, the number of tails per aggregate increases until the ionic liquid percolates. In this work, we demonstrate how the complementary software packages TRAVIS and AGGREGATES can be employed in conjunction to gain insights into the size and morphology of the [CnC1Im]Cl family, with n ∈ {2, 4, 6, 8, 10, 12}. The combination of the two approaches rounds off the picture of the intricate arrangement and structural features of the alkyl chains.
Collapse
Affiliation(s)
- Tom Frömbgen
- Mulliken
Center for Theoretical Chemistry, University
of Bonn, Beringstraße 4-6, D-53115 Bonn, Germany
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - José Nuno Canongia Lopes
- Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de
Lisboa, Av Rovisco Pais 1, 1049 001 Lisboa, Portugal
| | - Barbara Kirchner
- Mulliken
Center for Theoretical Chemistry, University
of Bonn, Beringstraße 4-6, D-53115 Bonn, Germany
| | - Karina Shimizu
- Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de
Lisboa, Av Rovisco Pais 1, 1049 001 Lisboa, Portugal
| |
Collapse
|
3
|
Carmona Esteva FJ, Zhang Y, Colón YJ, Maginn EJ. Molecular Dynamics Simulation of the Influence of External Electric Fields on the Glass Transition Temperature of the Ionic Liquid 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide. J Phys Chem B 2023; 127:4623-4632. [PMID: 37192465 DOI: 10.1021/acs.jpcb.3c00936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We present the results of molecular dynamics simulations of the ionic liquid (IL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C2C1im][NTf2] in the presence of external electric fields (EEFs) of varying strengths to understand the effects of EEFs on the glass transition temperature Tg. We compute Tg with an automated and objective method and observe a depression in Tg when cooling the IL within an EEF above a critical strength. The effect is reversible, and glasses prepared with EEFs recover their original zero-field Tg when heated. By examining the dynamics and structure of the liquid phase, we find that the EEF lowers the activation energy for diffusion, reducing the energetic barrier for movement and consequently Tg. We show that the effect can be leveraged to drive an electrified nonvapor compression refrigeration cycle.
Collapse
Affiliation(s)
- Fernando J Carmona Esteva
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yong Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yamil J Colón
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Edward J Maginn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
4
|
Bhattacharjee S, Khan S. Quantification of the impact of water on the wetting behavior of hydrophilic ionic liquid: a molecular dynamics study. MOLECULAR SIMULATION 2023. [DOI: 10.1080/08927022.2023.2175171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Sanchari Bhattacharjee
- Department of Chemical & Biochemical Engineering, Indian Institute of Technology Patna, Patna, India
| | - Sandip Khan
- Department of Chemical & Biochemical Engineering, Indian Institute of Technology Patna, Patna, India
| |
Collapse
|
5
|
Sun Z, Zheng L, Zhang ZY, Cong Y, Wang M, Wang X, Yang J, Liu Z, Huai Z. Molecular Modelling of Ionic Liquids: Situations When Charge Scaling Seems Insufficient. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020800. [PMID: 36677859 PMCID: PMC9865557 DOI: 10.3390/molecules28020800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Charge scaling as an effective solution to the experiment-computation disagreement in molecular modelling of ionic liquids (ILs) could bring the computational results close to the experimental reference for various thermodynamic properties. According to the large-scale benchmark calculations of mass density, solvation, and water-ILs transfer-free energies in our series of papers, the charge-scaling factor of 0.8 serves as a near-optimal option generally applicable to most ILs, although a system-dependent parameter adjustment could be attempted for further improved performance. However, there are situations in which such a charge-scaling treatment would fail. Namely, charge scaling cannot really affect the simulation outcome, or minimally perturbs the results that are still far from the experimental value. In such situations, the vdW radius as an additional adjustable parameter is commonly tuned to minimize the experiment-calculation deviation. In the current work, considering two ILs from the quinuclidinium family, we investigate the impacts of this vdW-scaling treatment on the mass density and the solvation/partition thermodynamics in a fashion similar to our previous charge-scaling works, i.e., scanning the vdW-scaling factor and computing physical properties under these parameter sets. It is observed that the mass density exhibits a linear response to the vdW-scaling factor with slopes close to -1.8 g/mL. By further investigating a set of physiochemically relevant temperatures between 288 K and 348 K, we confirm the robustness of the vdW-scaling treatment in the estimation of bulk properties. The best vdW-scaling parameter for mass density would worsen the computation of solvation/partition thermodynamics, and a marginal decrease in the vdW-scaling factor is considered as an intermediate option balancing the reproductions of bulk properties and solvation thermodynamics. These observations could be understood in a way similar to the charge-scaling situation. i.e., overfitting some properties (e.g., mass density) would degrade the accuracy of the other properties (e.g., solvation free energies). Following this principle, the general guideline for applying this vdW-tuning protocol is by using values between the density-derived choice and the solvation/partition-derived solution. The charge and current vdW scaling treatments cover commonly encountered ILs, completing the protocol for accurate modelling of ILs with fixed-charge force fields.
Collapse
Affiliation(s)
- Zhaoxi Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Correspondence: (Z.S.); (X.W.); (Z.H.)
| | - Lei Zheng
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Zuo-Yuan Zhang
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yalong Cong
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Mao Wang
- NCS Testing Technology Co., Ltd., No. 13, Gaoliangqiao Xiejie, Beijing 100081, China
| | - Xiaohui Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Leto Laboratories Co., Ltd., Beijing 100083, China
- Correspondence: (Z.S.); (X.W.); (Z.H.)
| | - Jingjing Yang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhirong Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhe Huai
- XtalPi-AI Research Center, 7F, Tower A, Dongsheng Building, No.8, Zhongguancun East Road, Beijing 100083, China
- Correspondence: (Z.S.); (X.W.); (Z.H.)
| |
Collapse
|
6
|
Kowsari MH, Jalali F. Tracing the Effect of Replacing [Gly] - with [Ala] - and Hydroxylation of [emim] + on the Fine-Tuning of the Transport Properties of the Corresponding Amino Acid-Based Ionic Liquids Using MD Simulation. J Phys Chem B 2023; 127:194-204. [PMID: 36563049 DOI: 10.1021/acs.jpcb.2c07805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Natural amino acid-based ionic liquids (AAILs) composed of deprotonated amino acids, [AA]-, as anions and hydroxylated imidazolium cations provide an eco-friendly nontoxic IL family with the growing number of chemical and biochemical revolutionary applications. In this paper, the transport properties of four AAILs composed of 1-(2-hydroxyethyl)-3-methylimidazolium ([HOemim]+) and 1-ethyl-3-methylimidazolium ([emim]+) cations with alaninate and glycinate anions were studied by molecular dynamics (MD) simulations. A nonpolarizable all-atom force field with the scaled charge (±0.8e) on each of the ions was applied and compared with the unit charge model in some cases. The tunable effects of the presence of the hydroxyl group in the side chain of the imidazolium cation, the type of amino acid anion, and the varied temperature on the dynamical behavior of AAILs were investigated in detail. The experimentally compatible trends of the simulated ionic self-diffusion coefficients, ionic conductivity, and ionicity were found to be inverse to the viscosity and ionic association of these ILs as [emim][Gly] > [emim][Ala] > [HOemim][Gly] > [HOemim][Ala]. The main reason behind these trends is the higher ability of the hydroxylated cation for the hydrogen-bond formation with [AA]-. The mean square displacement (MSD), self-diffusion, and transference number of imidazolium cations are larger than those of [AA]- anions, except in the case of [HOemim][Gly]. It was found that the activation energy for diffusion of [AA]- is lower than that of [HOemim]+ but higher than that of [emim]+ in [HOemim][AA] and [emim][AA] ILs, respectively. The computed velocity autocorrelation function (VACF) showed that [Gly]-, as the lightest ion, has the shortest mean collision time and velocity randomization time among the ions, especially in the [HOemim][Gly] IL. Replacing [emim]+ with [HOemim]+, similar to the effect of decreasing temperature, causes significant decreasing of the ionic self-diffusion and increasing of the well depth of the first minimum of the ionic VACFs. Current findings show that introducing suitable functional groups in the side chain of imidazolium cations can be a viable approach for efficient engineering design and fine-tuning of the transport properties of these AAILs.
Collapse
Affiliation(s)
- Mohammad H Kowsari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan45137-66731, Iran.,Center for Research in Climate Change and Global Warming (CRCC), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan45137-66731, Iran
| | - Farzaneh Jalali
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan45137-66731, Iran
| |
Collapse
|
7
|
Kubisiak P, Wróbel P, Eilmes A. How Temperature, Pressure, and Salt Concentration Affect Correlations in LiTFSI/EMIM-TFSI Electrolytes: A Molecular Dynamics Study. J Phys Chem B 2021; 125:12292-12302. [PMID: 34706539 PMCID: PMC8591607 DOI: 10.1021/acs.jpcb.1c07782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/13/2021] [Indexed: 11/29/2022]
Abstract
Classical polarizable molecular dynamics simulations have been performed for LiTFSI solutions in the EMIM-TFSI ionic liquid. Different temperature or pressure values and salt concentrations have been examined. The structure and dynamics of the solvation shell of Li+ cations, diffusion coefficients of ions, conductivities of the electrolytes, and correlations between motions of ions have been analyzed. The results indicated that regardless of the conditions, significant correlations are present in all systems. The degree of correlations depends mainly on the salt fraction in the electrolyte and is much less affected by temperature and pressure changes. A positive correlation between motions of Li+ cations and TFSI anions, leading to the occurrence of negative Li+ transference numbers, exists for all conditions, although temperature and pressure changes affect the speed of anion exchange in Li+ solvation shells.
Collapse
Affiliation(s)
- Piotr Kubisiak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Piotr Wróbel
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Andrzej Eilmes
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
8
|
Balogun A, Lazarenko D, Khabaz F, Khare R. Extending the timescale of molecular simulations by using time-temperature superposition: rheology of ionic liquids. SOFT MATTER 2021; 17:7210-7220. [PMID: 34269781 DOI: 10.1039/d1sm00701g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular dynamics simulations are used to determine the temperature dependence of the dynamic and rheological properties of a model imidazolium-based ionic liquid (IL). The simulation results for the volumetric properties of the IL are in good agreement with the experimental results. The temperature dependence of the diffusion coefficient of anions and cations follows the Vogel-Fulcher-Tammann equation over the range of the temperatures studied. The shear viscosity of the IL shows a Newtonian plateau at low shear rates and shear-thinning behavior at high shear rates. The dynamic modulus values indicate that the IL behaves like a viscous liquid at high temperatures and low frequencies, while its viscoelastic response becomes similar to that of an elastic solid at low temperatures and high frequencies. Using the time-temperature superposition (TTS) principle, the dynamic moduli, shear viscosity, and mean squared displacement of cations and anions in the diffusive regime can be collapsed onto master curves by applying a single set of shift factors. Due to the large mismatch in the timescale investigated by the atomistically detailed simulations and experiments, the glass transition temperature predicted in simulations shifts to higher values. When this timescale mismatch is accounted for by using appropriate shift factors, the master curves of the dynamic moduli obtained in simulations closely match those obtained in experiments. This result demonstrates the exciting ability of TTS to overcome the large timescale disparity between simulations and experiments which will enable the use of molecular simulations for quantitatively predicting the rheological property values at frequencies of practical interest.
Collapse
Affiliation(s)
- Adegbola Balogun
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Daria Lazarenko
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| | - Fardin Khabaz
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA. and Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, OH 44325, USA
| | - Rajesh Khare
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
9
|
Lazarenko D, Khabaz F. Thermodynamics and Rheology of Imidazolium-Based Ionic Liquid–Oil Mixtures: A Molecular Simulation Study. J Phys Chem B 2021; 125:5897-5908. [DOI: 10.1021/acs.jpcb.1c01263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daria Lazarenko
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Fardin Khabaz
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
10
|
Perego A, Khabaz F. Volumetric and Rheological Properties of Vitrimers: A Hybrid Molecular Dynamics and Monte Carlo Simulation Study. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01423] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alessandro Perego
- Department of Polymer Engineering, The University of Akron, 250 S. Forge Street, Akron, Ohio 44325-0301, United States
| | - Fardin Khabaz
- Department of Polymer Engineering, The University of Akron, 250 S. Forge Street, Akron, Ohio 44325-0301, United States
- Department of Chemical, Biomolecular and Corrosion Engineering, The University of Akron, 250 S. Forge Street, Akron, Ohio 44325-0301, United States
| |
Collapse
|
11
|
Bernardino K, Goloviznina K, Gomes MC, Pádua AAH, Ribeiro MCC. Ion pair free energy surface as a probe of ionic liquid structure. J Chem Phys 2020; 152:014103. [DOI: 10.1063/1.5128693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Kalil Bernardino
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil
| | - Kateryna Goloviznina
- Laboratoire de Chimie, ENS de Lyon, Université de Lyon, CNRS, 69364 Lyon, France
| | | | - Agílio A. H. Pádua
- Laboratoire de Chimie, ENS de Lyon, Université de Lyon, CNRS, 69364 Lyon, France
| | - Mauro C. C. Ribeiro
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil
| |
Collapse
|
12
|
Schaffarczyk McHale KS, Haines RS, Harper JB. The Dependence of Ionic Liquid Solvent Effects on the Nucleophilic Heteroatom in S N Ar Reactions. Highlighting the Potential for Control of Selectivity. Chempluschem 2019; 84:465-473. [PMID: 31943898 DOI: 10.1002/cplu.201900173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/09/2019] [Indexed: 11/11/2022]
Abstract
Nucleophilic aromatic substitution (SN Ar) reactions of 1-fluoro-4-nitrobenzene using similar nitrogen and sulfur nucleophiles were studied through extensive kinetic analysis in mixtures containing ionic liquids. The interactions of the ionic liquid components with the starting materials and transition state for each process were investigated in an attempt to construct a broad predictive framework for how ionic liquids affect reaction outcome. It was found that, based on the activation parameters, the microscopic interactions and thus the ionic liquid solvent effect were different for each of the nucleophiles considered. The results from this study suggest that it may be possible to rationally select a given ionic liquid mixture to selectively control reaction outcome of an SN Ar reaction where multiple nucleophiles are present.
Collapse
Affiliation(s)
| | - Ronald S Haines
- School of Chemistry, University of New South Wales, UNSW Sydney, NSW 2052, Australia
| | - Jason B Harper
- School of Chemistry, University of New South Wales, UNSW Sydney, NSW 2052, Australia
| |
Collapse
|
13
|
Abdurrokhman I, Elamin K, Danyliv O, Hasani M, Swenson J, Martinelli A. Protic Ionic Liquids Based on the Alkyl-Imidazolium Cation: Effect of the Alkyl Chain Length on Structure and Dynamics. J Phys Chem B 2019; 123:4044-4054. [PMID: 30995045 DOI: 10.1021/acs.jpcb.9b01274] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protic ionic liquids are known to form extended hydrogen-bonded networks that can lead to properties different from those encountered in the aprotic analogous liquids, in particular with respect to the structure and transport behavior. In this context, the present paper focuses on a wide series of 1-alkyl-imidazolium bis(trifluoromethylsulfonyl)imide ionic liquids, [HC nIm][TFSI], with the alkyl chain length ( n) on the imidazolium cation varying from ethyl ( n = 2) to dodecyl ( n = 12). A combination of several methods, such as vibrational spectroscopy, wide-angle X-ray scattering (WAXS), broadband dielectric spectroscopy, and 1H NMR spectroscopy, is used to understand the correlation between local cation-anion coordination, nature of nanosegregation, and transport properties. The results indicate the propensity of the -NH site on the cation to form stronger H-bonds with the anion as the alkyl chain length increases. In addition, the position and width of the scattering peak q1 (or the pre-peak), resolved by WAXS and due to the nanosegregation of the polar from the nonpolar domains, are clearly dependent on the alkyl chain length. However, we find no evidence from pulsed-field gradient NMR of a proton motion decoupled from molecular diffusion, hypothesized to be facilitated by the longer N-H bonds localized in the segregated ionic domains. Finally, for all protic ionic liquids investigated, the ionic conductivity displays a Vogel-Fulcher-Tammann dependence on inverse temperature, with an activation energy Ea that also depends on the alkyl chain length, although not strictly linearly.
Collapse
|
14
|
Kumar P, Prakash P, Ramya KR, Venkatnathan A. Probing translational and rotational dynamics in hydrophilic/hydrophobic anion based imidazolium ionic liquid-water mixtures. SOFT MATTER 2018; 14:6109-6118. [PMID: 29998279 DOI: 10.1039/c8sm00765a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this investigation, we examine the effect of water concentration and temperature on the dynamical properties of [Hmim][Cl] and [Hmim][NTf2] ionic liquids (ILs). The dynamical properties such as translational diffusion coefficients, ion-pair lifetimes, and rotational correlation times are calculated using molecular dynamics simulations. The simulations predict that water concentration also significantly impacts the magnitude of dynamical properties. At low, intermediate and high water concentrations, the following trend in diffusion coefficients is seen: Cl- > Hmim+; Cl- > NTf2-; Hmim+ ([Hmim][Cl]) > Hmim+ ([Hmim] [NTf2]). At ultra-low water concentrations of [Hmim][Cl] IL, several bridge like configurations form between water molecules and Cl- anions, which are supported by a complex distribution of water clusters. The effect of an increase in the water concentration leads to a decrease in ion-pair lifetimes between the Hmim+ cations and Cl-/NTf2- anions, which strongly correlates with the trends observed from the diffusion coefficients. A biexponential function was found to be the best fit for the RACF at neat/ultra-low water concentrations of [Hmim][Cl] and [Hmim][NTf2] ILs, whereas a single exponential function was sufficient to fit the RACF at low, intermediate and high water concentrations. The rotational relaxation time of the Hmim+ cations is larger in neat [Hmim][Cl] compared to that in neat [Hmim][NTf2] with an opposite trend seen with hydration. The rotational correlation time of water molecules is larger in [Hmim][Cl] compared to that in [Hmim][NTf2] at low and intermediate water concentrations, with similar correlation times observed at high water concentrations.
Collapse
Affiliation(s)
- Praveen Kumar
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune 411008, India.
| | | | | | | |
Collapse
|