1
|
Ghosh C, Jana B. Intersubunit Assisted Folding of DNA Binding Domains in Dimeric Catabolite Activator Protein. J Phys Chem B 2020; 124:1411-1423. [DOI: 10.1021/acs.jpcb.9b10941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Catherine Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
2
|
Donnarumma F, Leone S, Delfi M, Emendato A, Ami D, Laurents DV, Natalello A, Spadaccini R, Picone D. Probing structural changes during amyloid aggregation of the sweet protein MNEI. FEBS J 2019; 287:2808-2822. [DOI: 10.1111/febs.15168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Federica Donnarumma
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Serena Leone
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Masoud Delfi
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Alessandro Emendato
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences University of Milano‐Bicocca Italy
| | - Douglas V. Laurents
- Institute of Physical Chemistry ‘Rocasolano’ Consejo Superior de Investigaciones Científicas Madrid Spain
| | - Antonino Natalello
- Department of Biotechnology and Biosciences University of Milano‐Bicocca Italy
| | - Roberta Spadaccini
- Department of Science and Technology Università degli Studi del Sannio Benevento Italy
| | - Delia Picone
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| |
Collapse
|
3
|
Observation of Continuous Contraction and a Metastable Misfolded State during the Collapse and Folding of a Small Protein. J Mol Biol 2019; 431:3814-3826. [DOI: 10.1016/j.jmb.2019.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 01/22/2023]
|
4
|
Xiong J, Gao M, Zhou J, Liu S, Su Z, Liu Z, Huang Y. The influence of intrinsic folding mechanism of an unfolded protein on the coupled folding-binding process during target recognition. Proteins 2018; 87:265-275. [PMID: 30520528 DOI: 10.1002/prot.25646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 09/28/2018] [Accepted: 11/29/2018] [Indexed: 11/11/2022]
Abstract
Intrinsically disordered proteins (IDPs) are extensively involved in dynamic signaling processes which require a high association rate and a high dissociation rate for rapid binding/unbinding events and at the same time a sufficient high affinity for specific recognition. Although the coupled folding-binding processes of IDPs have been extensively studied, it is still impossible to predict whether an unfolded protein is suitable for molecular signaling via coupled folding-binding. In this work, we studied the interplay between intrinsic folding mechanisms and coupled folding-binding process for unfolded proteins through molecular dynamics simulations. We first studied the folding process of three representative IDPs with different folded structures, that is, c-Myb, AF9, and E3 rRNase. We found the folding free energy landscapes of IDPs are downhill or show low barriers. To further study the influence of intrinsic folding mechanism on the binding process, we modulated the folding mechanism of barnase via circular permutation and simulated the coupled folding-binding process between unfolded barnase permutant and folded barstar. Although folding of barnase was coupled to target binding, the binding kinetics was significantly affected by the intrinsic folding free energy barrier, where reducing the folding free energy barrier enhances binding rate up to two orders of magnitude. This accelerating effect is different from previous results which reflect the effect of structure flexibility on binding kinetics. Our results suggest that coupling the folding of an unfolded protein with no/low folding free energy barrier with its target binding may provide a way to achieve high specificity and rapid binding/unbinding kinetics simultaneously.
Collapse
Affiliation(s)
- Junwen Xiong
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Hubei University of Technology, Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial Fermentation (Ministry of Education), Wuhan, China
| | - Meng Gao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Hubei University of Technology, Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial Fermentation (Ministry of Education), Wuhan, China
| | - Jingjing Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Hubei University of Technology, Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial Fermentation (Ministry of Education), Wuhan, China
| | - Sen Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Hubei University of Technology, Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial Fermentation (Ministry of Education), Wuhan, China
| | - Zhengding Su
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Hubei University of Technology, Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial Fermentation (Ministry of Education), Wuhan, China
| | - Zhirong Liu
- College of Chemistry and Molecular Engineering, and Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing, China
| | - Yongqi Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Hubei University of Technology, Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial Fermentation (Ministry of Education), Wuhan, China
| |
Collapse
|
5
|
Leone S, Fonderico J, Melchiorre C, Carpentieri A, Picone D. Structural effects of methylglyoxal glycation, a study on the model protein MNEI. Mol Cell Biochem 2018; 451:165-171. [PMID: 30014221 DOI: 10.1007/s11010-018-3403-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 07/12/2018] [Indexed: 12/23/2022]
Abstract
The reaction of free amino groups in proteins with reactive carbonyl species, known as glycation, leads to the formation of mixtures of products, collectively referred to as advanced glycation endproducts (AGEs). These compounds have been implicated in several important diseases, but their role in pathogenesis and clinical symptoms' development is still debated. Particularly, AGEs are often associated to the formation of amyloid deposits in conformational diseases, such as Alzheimer's and Parkinson's disease, and it has been suggested that they might influence the mechanisms and kinetics of protein aggregation. We here present the characterization of the products of glycation of the model protein MNEI with methylglyoxal and their effect on the protein structure. We demonstrate that, despite being an uncontrolled process, glycation occurs only at specific residues of the protein. Moreover, while not affecting the protein fold, it alters its shape and hydrodynamic properties and increases its tendency to fibrillar aggregation. Our study opens the way to in deep structural investigations to shed light on the complex link between protein post-translational modifications, structure, and stability.
Collapse
Affiliation(s)
- Serena Leone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126, Naples, Italy.
| | - Jole Fonderico
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126, Naples, Italy
| | - Chiara Melchiorre
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126, Naples, Italy
| | - Andrea Carpentieri
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126, Naples, Italy
| | - Delia Picone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126, Naples, Italy.
| |
Collapse
|