1
|
Naito H, Sumi T, Koga K. How do water-mediated interactions and osmotic second virial coefficients vary with particle size? Faraday Discuss 2024; 249:440-452. [PMID: 37791511 DOI: 10.1039/d3fd00104k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
We examine quantitatively the solute-size dependences of the effective interactions between nonpolar solutes in water and in a simple liquid. The potential w(r) of mean force and the osmotic second virial coefficients B are calculated with high accuracy from molecular dynamics simulations. As the solute diameter increases from methane's to C60's with the solute-solute and solute-solvent attractive interaction parameters fixed to those for the methane-methane and methane-water interactions, the first minimum of w(r) lowers from -1.1 to -4.7 in units of the thermal energy kT. Correspondingly, the magnitude of B (<0) increases proportional to σα with some power close to 6 or 7, which reinforces the solute-size dependence of B found earlier for a smaller range of σ [H. Naito, R. Okamoto, T. Sumi and K. Koga, J. Chem. Phys., 2022, 156, 221104]. We also demonstrate that the strength of the attractive interactions between solute and solvent molecules can qualitatively change the characteristics of the effective pair interaction between solute particles, both in water and in a simple liquid. If the solute-solvent attractive force is set to be weaker (stronger) than a threshold, the effective interaction becomes increasingly attractive (repulsive) with increasing solute size.
Collapse
Affiliation(s)
- Hidefumi Naito
- Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan.
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Tomonari Sumi
- Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan.
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Kenichiro Koga
- Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan.
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
2
|
Gao A, Remsing RC, Weeks JD. Local Molecular Field Theory for Coulomb Interactions in Aqueous Solutions. J Phys Chem B 2023; 127:809-821. [PMID: 36669139 DOI: 10.1021/acs.jpcb.2c06988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Coulomb interactions play a crucial role in a wide array of processes in aqueous solutions but present conceptual and computational challenges to both theory and simulations. We review recent developments in an approach addressing these challenges─local molecular field (LMF) theory. LMF theory exploits an exact and physically suggestive separation of intermolecular Coulomb interactions into strong short-range and uniformly slowly varying long-range components. This allows us to accurately determine the averaged effects of the long-range components on the short-range structure using effective single particle fields and analytical corrections, greatly reducing the need for complex lattice summation techniques used in most standard approaches. The simplest use of these ideas in aqueous solutions leads to the short solvent (SS) model, where both solvent-solvent and solute-solvent Coulomb interactions have only short-range components. Here we use the SS model to give a simple description of pairing of nucleobases and biologically relevant ions in water.
Collapse
Affiliation(s)
- Ang Gao
- Department of Physics, Beijing University of Posts and Telecommunications, Beijing, China 100876
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - John D Weeks
- Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
3
|
Gao A, Remsing RC. Self-consistent determination of long-range electrostatics in neural network potentials. Nat Commun 2022; 13:1572. [PMID: 35322046 PMCID: PMC8943018 DOI: 10.1038/s41467-022-29243-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
Machine learning has the potential to revolutionize the field of molecular simulation through the development of efficient and accurate models of interatomic interactions. Neural networks can model interactions with the accuracy of quantum mechanics-based calculations, but with a fraction of the cost, enabling simulations of large systems over long timescales. However, implicit in the construction of neural network potentials is an assumption of locality, wherein atomic arrangements on the nanometer-scale are used to learn interatomic interactions. Because of this assumption, the resulting neural network models cannot describe long-range interactions that play critical roles in dielectric screening and chemical reactivity. Here, we address this issue by introducing the self-consistent field neural network - a general approach for learning the long-range response of molecular systems in neural network potentials that relies on a physically meaningful separation of the interatomic interactions - and demonstrate its utility by modeling liquid water with and without applied fields.
Collapse
Affiliation(s)
- Ang Gao
- Department of Physics, Beijing University of Posts and Telecommunications, 100876, Beijing, China.
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
4
|
Asthagiri DN, Paulaitis ME, Pratt LR. Thermodynamics of Hydration from the Perspective of the Molecular Quasichemical Theory of Solutions. J Phys Chem B 2021; 125:8294-8304. [PMID: 34313434 DOI: 10.1021/acs.jpcb.1c04182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The quasichemical organization of the potential distribution theorem, molecular quasichemical theory (QCT), enables practical calculations and also provides a conceptual framework for molecular hydration phenomena. QCT can be viewed from multiple perspectives: (a) as a way to regularize an ill-conditioned statistical thermodynamic problem; (b) as an introduction of and emphasis on the neighborship characteristics of a solute of interest; or (c) as a way to include accurate electronic structure descriptions of near-neighbor interactions in defensible statistical thermodynamics by clearly defining neighborship clusters. The theory has been applied to solutes of a wide range of chemical complexity, ranging from ions that interact with water with both long-ranged and chemically intricate short-ranged interactions, to solutes that interact with water solely through traditional van der Waals interations, and including water itself. The solutes range in variety from monatomic ions to chemically heterogeneous macromolecules. A notable feature of QCT is that, in applying the theory to this range of solutes, the theory itself provides guidance on the necessary approximations and simplifications that can facilitate the calculations. In this Perspective, we develop these ideas and document them with examples that reveal the insights that can be extracted using the QCT formulation.
Collapse
Affiliation(s)
- Dilipkumar N Asthagiri
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Michael E Paulaitis
- Center for Nanomedicine, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| | - Lawrence R Pratt
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
5
|
Gómez S, Rojas-Valencia N, Gómez SA, Cappelli C, Merino G, Restrepo A. A molecular twist on hydrophobicity. Chem Sci 2021; 12:9233-9245. [PMID: 34276953 PMCID: PMC8261874 DOI: 10.1039/d1sc02673a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 12/22/2022] Open
Abstract
A thorough exploration of the molecular basis for hydrophobicity with a comprehensive set of theoretical tools and an extensive set of organic solvent S/water binary systems is discussed in this work. Without a single exception, regardless of the nature or structure of S, all quantum descriptors of bonding yield stabilizing S⋯water interactions, therefore, there is no evidence of repulsion and thus no reason for etymological hydrophobicity at the molecular level. Our results provide molecular insight behind the exclusion of S molecules by water, customarily invoked to explain phase separation and the formation of interfaces, in favor of a complex interplay between entropic, enthalpic, and dynamic factors. S⋯water interfaces are not just thin films separating the two phases; instead, they are non-isotropic regions with density gradients for each component whose macroscopic stability is provided by a large number of very weak dihydrogen contacts. We offer a definition of interface as the region in which the density of the components in the A/B binary system is not constant. At a fundamental level, our results contribute to better current understanding of hydrophobicity. Notwithstanding the very weak nature of individual contacts, it is the cumulative effect of a large number of interactions (green NCI surfaces) which provides macroscopic stability to the interfaces.![]()
Collapse
Affiliation(s)
- Sara Gómez
- Scuola Normale Superiore, Classe di Scienze Piazza dei Cavalieri 7 56126 Pisa Italy
| | - Natalia Rojas-Valencia
- Instituto de Química, Universidad de Antioquia UdeA Calle 70 No. 52-21 Medellín Colombia .,Escuela de Ciencias y Humanidades, Departamento de Ciencias Básicas, Universidad Eafit AA 3300 Medellín Colombia
| | - Santiago A Gómez
- Instituto de Química, Universidad de Antioquia UdeA Calle 70 No. 52-21 Medellín Colombia
| | - Chiara Cappelli
- Scuola Normale Superiore, Classe di Scienze Piazza dei Cavalieri 7 56126 Pisa Italy
| | - Gabriel Merino
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados Unidad Mérida. Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex 97310 Mérida Yucatan Mexico
| | - Albeiro Restrepo
- Instituto de Química, Universidad de Antioquia UdeA Calle 70 No. 52-21 Medellín Colombia
| |
Collapse
|
6
|
Tomar DS, Paulaitis ME, Pratt LR, Asthagiri DN. Hydrophilic Interactions Dominate the Inverse Temperature Dependence of Polypeptide Hydration Free Energies Attributed to Hydrophobicity. J Phys Chem Lett 2020; 11:9965-9970. [PMID: 33170720 DOI: 10.1021/acs.jpclett.0c02972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We address the association of the hydrophobic driving forces in protein folding with the inverse temperature dependence of protein hydration, wherein stabilizing hydration effects strengthen with increasing temperature in a physiological range. All-atom calculations of the free energy of hydration of aqueous deca-alanine conformers, holistically including backbone and side-chain interactions together, show that attractive peptide-solvent interactions and the thermal expansion of the solvent dominate the inverse temperature signatures that have been interpreted traditionally as the hydrophobic stabilization of proteins in aqueous solution. Equivalent calculations on a methane solute are also presented as a benchmark for comparison. The present study calls for a reassessment of the forces that stabilize folded protein conformations in aqueous solutions and of the additivity of hydrophobic/hydrophilic contributions.
Collapse
Affiliation(s)
- Dheeraj S Tomar
- Xilio Therapeutics Inc., Waltham, Massachusetts 02451, United States
| | - Michael E Paulaitis
- Center for Nanomedicine, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| | - Lawrence R Pratt
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Dilipkumar N Asthagiri
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
7
|
Abstract
The dielectric nature of polar liquids underpins much of their ability to act as useful solvents, but its description is complicated by the long-ranged nature of dipolar interactions. This is particularly pronounced under the periodic boundary conditions commonly used in molecular simulations. In this article, the dielectric properties of a water model whose intermolecular electrostatic interactions are entirely short-ranged are investigated. This is done within the framework of local molecular-field theory (LMFT), which provides a well-controlled mean-field treatment of long-ranged electrostatics. This short-ranged model gives a remarkably good performance on a number of counts, and its apparent shortcomings are readily accounted for. These results not only lend support to LMFT as an approach for understanding solvation behavior, but also are relevant to those developing interaction potentials based on local descriptions of liquid structure.
Collapse
|
8
|
Bredt AJ, Ben-Amotz D. Influence of crowding on hydrophobic hydration-shell structure. Phys Chem Chem Phys 2020; 22:11724-11730. [PMID: 32409791 DOI: 10.1039/d0cp00702a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of molecular crowding on water structure, and the associated crossover behavior, is quantified using Raman multivariate curve resolution (Raman-MCR) hydration-shell vibrational spectroscopy of aqueous tert-butyl alcohol, 2-butyl alcohol and 2-butoxyethanol solutions of variable concentration and temperature. Changes in the hydration-shell OH stretch band shape and mean frequency are used to identify the temperature at which the hydration-shell crosses over from a more ordered to less ordered structure, relative to pure water. The influence of crowding on the crossover is found to depend on solute size and shape in a way that is correlated with the corresponding infinitely dilute hydration-shell structure (and the corresponding first hydration-shell spectra are invariably very similar to pure water). Analysis of the results using a Muller-like two-state equilibrium between more ordered and less ordered hydration-shell structures implies that crossover temperature changes are dictated primarily by enthalpic stabilization of the more ordered hydration-shell structures.
Collapse
Affiliation(s)
- Aria J Bredt
- Purdue University, Department of Chemistry, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
9
|
Abstract
Coulomb interactions play a major role in determining the thermodynamics, structure, and dynamics of condensed-phase systems, but often present significant challenges. Computer simulations usually use periodic boundary conditions to minimize corrections from finite cell boundaries but the long range of the Coulomb interactions generates significant contributions from distant periodic images of the simulation cell, usually calculated by Ewald sum techniques. This can add significant overhead to computer simulations and hampers the development of intuitive local pictures and simple analytic theory. In this paper, we present a general framework based on local molecular field theory to accurately determine the contributions from long-ranged Coulomb interactions to the potential of mean force between ionic or apolar hydrophobic solutes in dilute aqueous solutions described by standard classical point charge water models. The simplest approximation leads to a short solvent (SS) model, with truncated solvent-solvent and solute-solvent Coulomb interactions and long-ranged but screened Coulomb interactions only between charged solutes. The SS model accurately describes the interplay between strong short-ranged solute core interactions, local hydrogen-bond configurations, and long-ranged dielectric screening of distant charges, competing effects that are difficult to capture in standard implicit solvent models.
Collapse
|
10
|
Shao Y, Zhou X, Liu X, Wang L. Pre-oxidization-induced change of physicochemical characteristics and removal behaviours in conventional drinking water treatment processes for polyethylene microplastics. RSC Adv 2020; 10:41488-41494. [PMID: 35516570 PMCID: PMC9057855 DOI: 10.1039/d0ra07953g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/09/2020] [Indexed: 11/21/2022] Open
Abstract
Microplastics (MPs), as emerging pollutants, have attracted worldwide attention due to their ecological and biological toxicity. As microplastics have been detected frequently in drinking water, it is essential to evaluate the physicochemical property change and removal behaviors of MPs in drinking water treatment processes. This study selected polyethylene microplastics (PE-MPs) as the representative, and investigated the variations in its physicochemical characteristics after oxidizing by several conventional pre-oxidants (potassium permanganate, sodium hypochlorite, and ozone). Furthermore, coagulation, sedimentation, and filtration experiments were conducted to verify whether pre-oxidization influenced the removal of microplastics. The results indicate that pre-oxidization indeed changed the hydrophobicity, specific surface area, and functional groups of PE-MPs surface exposing to water phase. These changes affected the adsorption of trace pollutants with different hydrophobicity (acesulfame, carbamazepine, and nitrobenzene). However, such changes showed a subtle effect on the removal of PE MPs by coagulation–sedimentation–filtration processes. Current findings suggest that pre-oxidization may increase the risk of pathogenic microorganisms due to the increasing oxidization-induced shelter ability of MPs towards microorganisms. This study revealed whether the conventional pre-oxidization processes in drinking water treatment can affect PE MPs′ physicochemical characteristics and their removal behavior in the subsequent drinking water treatment processes.![]()
Collapse
Affiliation(s)
- Yu Shao
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology
- College of Civil Engineering and Architecture
- Zhejiang University
- Hangzhou 310058
- China
| | - Xinhong Zhou
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology
- College of Civil Engineering and Architecture
- Zhejiang University
- Hangzhou 310058
- China
| | - Xiaowei Liu
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology
- College of Civil Engineering and Architecture
- Zhejiang University
- Hangzhou 310058
- China
| | - Lili Wang
- Department of Biological and Environmental Engineering
- Jiyang College of Zhejiang A&F University
- Zhuji 311800
- China
| |
Collapse
|
11
|
Abstract
Hydration-shell vibrational spectroscopy provides an experimental window into solute-induced water structure changes that mediate aqueous folding, binding, and self-assembly. Decomposition of measured Raman and infrared (IR) spectra of aqueous solutions using multivariate curve resolution (MCR) and related methods may be used to obtain solute-correlated spectra revealing solute-induced perturbations of water structure, such as changes in water hydrogen-bond strength, tetrahedral order, and the presence of dangling (non-hydrogen-bonded) OH groups. More generally, vibrational-MCR may be applied to both aqueous and nonaqueous solutions, including multicomponent mixtures, to quantify solvent-mediated interactions between oily, polar, and ionic solutes, in both dilute and crowded fluids. Combining vibrational-MCR with emerging theoretical modeling strategies promises synergetic advances in the predictive understanding of multiscale self-assembly processes of both biological and technological interest.
Collapse
Affiliation(s)
- Dor Ben-Amotz
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
12
|
Jiang Z, Remsing RC, Rego NB, Patel AJ. Characterizing Solvent Density Fluctuations in Dynamical Observation Volumes. J Phys Chem B 2019; 123:1650-1661. [PMID: 30682885 DOI: 10.1021/acs.jpcb.8b11423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydrophobic effects drive diverse aqueous assemblies, such as micelle formation or protein folding, wherein the solvent plays an important role. Consequently, characterizing the free energetics of solvent density fluctuations can lead to important insights into these processes. Although techniques such as the indirect umbrella sampling (INDUS) method can be used to characterize solvent fluctuations in static observation volumes of various sizes and shapes, characterizing how the solvent mediates inherently dynamic processes, such as self-assembly or conformational change, remains a challenge. In this work, we generalize the INDUS method to facilitate the enhanced sampling of solvent fluctuations in dynamical observation volumes, whose positions and shapes can evolve. We illustrate the usefulness of this generalization by characterizing water density fluctuations in dynamical volumes pertaining to the hydration of flexible solutes, the assembly of small hydrophobes, and conformational transitions in a model peptide. We also use the method to probe the dynamics of hard spheres.
Collapse
Affiliation(s)
| | - Richard C Remsing
- Institute for Computational Molecular Science , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | | | | |
Collapse
|