1
|
Corazza ML, Trancoso J. Phase equilibria modeling of biorefinery-related systems: a systematic review. CHEMICAL PRODUCT AND PROCESS MODELING 2021. [DOI: 10.1515/cppm-2020-0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The search for sustainable ideas has gained prominence in recent decades at all levels of society since it has become imperative an economic, social, and environmental development in an integrated manner. In this context, biorefineries are currently present as the technology that best covers all these parameters, as they add the benefits of waste reuse, energy cogeneration, and fossil fuel substitution. Thus, the study of the various applicable biological matrices and exploring the technical capabilities of these processes become highly attractive. Thermodynamic modeling acts in this scenario as a fundamental tool for phase behavior predictions in process modeling, design, and optimization. Thus, this work aimed to systematize, using the PRISMA statement for systematic reviews, the information published between 2010 and 2020 on phase equilibria modeling in systems related to biorefineries to organize what is already known about the subject. As a result, 236 papers were categorized in terms of the year, country, type of phase equilibria, and thermodynamic model used. Also, the phase behavior predictions of different thermodynamic models under the same process conditions were qualitatively compared, establishing PC-SAFT as the model that best represents the great diversity of interest systems for biorefineries in a wide range of conditions.
Collapse
Affiliation(s)
- Marcos L. Corazza
- Department of Chemical Engineering , Federal University of Parana , Parana , Brazil
| | - Julia Trancoso
- Department of Chemical Engineering , Federal University of Parana , Parana , Brazil
| |
Collapse
|
2
|
Paduszyński K, Więckowski M, Okuniewski M, Domańska U. New phase equilibrium data at ambient and high pressure for strongly asymmetric mixtures containing menthol. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
3
|
Experimental Data of Fluid Phase Equilibria- Correlation and Prediction Models: A Review. Processes (Basel) 2019. [DOI: 10.3390/pr7050277] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The examples of phase equilibria in binary systems, solid/liquid (SLE), liquid/liquid (LLE), vapor/liquid (VLE), as well as liquid/liquid equilibria in ternary systems mainly containing ionic liquids (ILs), or the infragrance materials, or pharmaceuticals with molecular organic solvents, such as an alcohol, or water, or hydrocarbons, are presented. The most popular correlation methods of the experimental phase equilibrium data are presented, related to the excess Gibbs free energy models such as Wilson, universal-quasichemical, UNIQUAC and non-random two-liquid model, NRTL as well as several popular theories for the modeling of the phase equilibria and excess molar enthalpy, HE in binary or ternary mixtures are presented: the group contribution method (Mod. UNIFAC) and modified UNIFAC model for pharmaceuticals and lattice theory based on non-random hydrogen bonding (NRHB). The SLE, LLE, or VLE and HE of these systems may be described by the Perturbed-Chain Polar Statistical Associating Fluid Theory (PC-SAFT), or a Conductor-like Screening Model for Real Solvents (COSMO-RS). The examples of the application of ILs as extractants for the separation of aromatic hydrocarbons from alkanes, sulfur compounds from alkanes, alkenes from alkanes, ethylbenzene from styrene, butan-1-ol from water phase, or 2-phenylethanol (PEA) from water are discussed on the basis of previously published data. The first information about the selectivity of extrahent for separation can be obtained from the measurements of the limiting activity coefficient measurements by the gas–liquid chromatography technique. This review outlines the main research work carried out over the last few years on direct measurements of phase equilibria, or HE and limiting activity coefficients, the possibility of thermodynamic modeling with emphasis on recent research achievements and potential for future research.
Collapse
|