1
|
Shukla A, Biswal AS, Chowdhury A, Halder R, Chatterjee S. Aggregation-Induced Modulation of Ground and Excited State Photophysics of 5-( tert-Butyl)-2-Hydroxy-1,3-Isophthalaldehyde (5- tBHI). J Phys Chem B 2024; 128:5437-5453. [PMID: 38662934 DOI: 10.1021/acs.jpcb.4c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
5-(tert-Butyl)-2-hydroxy-1,3-isophthalaldehyde (5-tBHI) is a photochromic material susceptible to either excited state proton transfer or excited state intramolecular proton transfer, depending upon the solvent. However, it has also been found to aggregate in the presence of sodium dodecyl sulfate. In this current study, based on the steady-state and time-resolved spectroscopy, supported by crystallography, quantum chemical density functional theory calculation, and molecular dynamics (MD) simulation, we report on the aggregation of this potential single benzene-based emitter (SBBE) in neat solvents as well as solid phase to modulate its photophysics. It has been found that 5-tBHI forms mixed aggregates of different orders, owing to the presence of both enolic and tautomeric forms, to yield tunable emission, although the emission intensity is quenched. These findings suggest that the intramolecular hydrogen bonding of 5-tBHI not only limits intermolecular interactions but also promotes nonradiative deactivation pathways. Hence, designing and structural engineering, with a focus to suppressing intramolecular hydrogen bonding as well as increasing through space conjugation by replacing the aldehydic moieties with bulky aliphatic or aromatic ketonic groups, can be a plausible approach to yielding improved probes with tunable emission and higher fluorescence quantum yields.
Collapse
Affiliation(s)
- Aparna Shukla
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad 826004 Jharkhand, India
| | - Abhipsa Sekhar Biswal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad 826004 Jharkhand, India
| | - Arkaprava Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Ritaban Halder
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Soumit Chatterjee
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad 826004 Jharkhand, India
| |
Collapse
|
2
|
Gong L, Wu F, Yang W, Huang C, Li W, Wang X, Wang J, Tang T, Zeng H. Unraveling the hydrophobic interaction mechanisms of hydrocarbon and fluorinated surfaces. J Colloid Interface Sci 2023; 635:273-283. [PMID: 36587579 DOI: 10.1016/j.jcis.2022.12.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
HYPOTHESIS Numerous hydrocarbon and fluorine-based hydrophobic surfaces have been widely applied in various engineering and bioengineering fields. It is hypothesized that the hydrophobic interactions of hydrocarbon and fluorinated surfaces in aqueous media would show some differences. EXPERIMENTS The hydrophobic interactions of hydrocarbon and fluorinated surfaces with air bubbles in aqueous solutions have been systematically and quantitatively measured using a bubble probe atomic force microscopy (AFM) technique. Ethanol was introduced to water for modulating the solution polarity. The experimental force profiles were analyzed using a theoretical model combining the Reynolds lubrication theory and augmented Young-Laplace equation by including disjoining pressure arisen from the Derjarguin-Landau-Verwey-Overbeek (DLVO) and non-DLVO interactions (i.e., hydrophobic interactions). FINDINGS The experiment results show that the hydrophobic interactions were firstly weakened and then strengthened by increasing ethanol content in the aqueous media, mainly due to the variation in interfacial hydrogen bonding network. The fluorinated surface exhibited less sensitivity to ethanol than hydrocarbon surface, which is attributed to the presence of ordered interfacial water layer. Our work reveals the different hydrophobic effects of hydrocarbon and fluorinated surfaces, with useful implications on modulating the interfacial interactions of relevant materials in various engineering and bioengineering applications.
Collapse
Affiliation(s)
- Lu Gong
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Feiyi Wu
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wenshuai Yang
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Charley Huang
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wenhui Li
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xiaogang Wang
- Heavy Machinery Engineering Research Center of Education Ministry, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Jianmei Wang
- Heavy Machinery Engineering Research Center of Education Ministry, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Tian Tang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
3
|
Nagasaka M, Bouvier M, Yuzawa H, Kosugi N. Hydrophobic Cluster Formation in Aqueous Ethanol Solutions Probed by Soft X-ray Absorption Spectroscopy. J Phys Chem B 2022; 126:4948-4955. [PMID: 35748647 DOI: 10.1021/acs.jpcb.2c02990] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydrophobic cluster structures in aqueous ethanol solutions at different concentrations have been investigated by soft X-ray absorption spectroscopy (XAS). In the O K-edge XAS, we have found that hydrogen bond structures among water molecules are enhanced in the middle-concentration region by the hydrophobic interaction of the ethyl groups in ethanol. In the C K-edge XAS, the lower energy features arise from a transition from the terminal methyl C 1s electron to an unoccupied orbital of 3s Rydberg character, which is sensitive to the nearest-neighbor intermolecular interactions. From the comparison of C K-edge XAS with the inner-shell calculations, we have found that ethanol clusters are easily formed in the middle-concentration region due to the hydrophobic interaction of the ethyl group in ethanol, resulting in the enhancement of the hydrogen bond structures among water molecules. This behavior is different from aqueous methanol solutions, where the methanol-water mixed clusters are more predominant in the middle-concentration region due to the relatively weak hydrophobic interactions of the methyl group in methanol.
Collapse
Affiliation(s)
- Masanari Nagasaka
- Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan.,SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki 444-8585, Japan
| | - Mathilde Bouvier
- Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
| | - Hayato Yuzawa
- Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
| | - Nobuhiro Kosugi
- Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan.,SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
4
|
Pretti E, Shell MS. A microcanonical approach to temperature-transferable coarse-grained models using the relative entropy. J Chem Phys 2021; 155:094102. [PMID: 34496595 DOI: 10.1063/5.0057104] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bottom-up coarse-graining methods provide systematic tools for creating simplified models of molecular systems. However, coarse-grained (CG) models produced with such methods frequently fail to accurately reproduce all thermodynamic properties of the reference atomistic systems they seek to model and, moreover, can fail in even more significant ways when used at thermodynamic state points different from the reference conditions. These related problems of representability and transferability limit the usefulness of CG models, especially those of strongly state-dependent systems. In this work, we present a new strategy for creating temperature-transferable CG models using a single reference system and temperature. The approach is based on two complementary concepts. First, we switch to a microcanonical basis for formulating CG models, focusing on effective entropy functions rather than energy functions. This allows CG models to naturally represent information about underlying atomistic energy fluctuations, which would otherwise be lost. Such information not only reproduces energy distributions of the reference model but also successfully predicts the correct temperature dependence of the CG interactions, enabling temperature transferability. Second, we show that relative entropy minimization provides a direct and systematic approach to parameterize such classes of temperature-transferable CG models. We calibrate the approach initially using idealized model systems and then demonstrate its ability to create temperature-transferable CG models for several complex molecular liquids.
Collapse
Affiliation(s)
- Evan Pretti
- Department of Chemical Engineering, Engineering II Building, University of California, Santa Barbara, Santa Barbara, California 93106-5080, USA
| | - M Scott Shell
- Department of Chemical Engineering, Engineering II Building, University of California, Santa Barbara, Santa Barbara, California 93106-5080, USA
| |
Collapse
|
5
|
Zueva OS, Makarova AO, Khairutdinov BI, Zuev YF, Turanov AN. Association of ionic surfactant in binary water—ethanol media as indicator of changes in structure and properties of solvent. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3203-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Pothoczki S, Pethes I, Pusztai L, Temleitner L, Ohara K, Bakó I. Properties of Hydrogen-Bonded Networks in Ethanol-Water Liquid Mixtures as a Function of Temperature: Diffraction Experiments and Computer Simulations. J Phys Chem B 2021; 125:6272-6279. [PMID: 34078085 PMCID: PMC8279560 DOI: 10.1021/acs.jpcb.1c03122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
New X-ray and neutron
diffraction experiments have been performed
on ethanol–water mixtures as a function of decreasing temperature,
so that such diffraction data are now available over the entire composition
range. Extensive molecular dynamics simulations show that the all-atom
interatomic potentials applied are adequate for gaining insight into
the hydrogen-bonded network structure, as well as into its changes
on cooling. Various tools have been exploited for revealing details
concerning hydrogen bonding, as a function of decreasing temperature
and ethanol concentration, like determining the H-bond acceptor and
donor sites, calculating the cluster-size distributions and cluster
topologies, and computing the Laplace spectra and fractal dimensions
of the networks. It is found that 5-membered hydrogen-bonded cycles
are dominant up to an ethanol mole fraction xeth = 0.7 at room temperature, above which the concentrated
ring structures nearly disappear. Percolation has been given special
attention, so that it could be shown that at low temperatures, close
to the freezing point, even the mixture with 90% ethanol (xeth = 0.9) possesses a three-dimensional (3D)
percolating network. Moreover, the water subnetwork also percolates
even at room temperature, with a percolation transition occurring
around xeth = 0.5.
Collapse
Affiliation(s)
- Szilvia Pothoczki
- Wigner Research Centre for Physics, Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary
| | - Ildikó Pethes
- Wigner Research Centre for Physics, Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary
| | - László Pusztai
- Wigner Research Centre for Physics, Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary.,International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - László Temleitner
- Wigner Research Centre for Physics, Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary
| | - Koji Ohara
- Diffraction and Scattering Division, JASRI, SPring-8, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Imre Bakó
- Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| |
Collapse
|
7
|
Abstract
Aqueous cosolvent systems (ACoSs) are mixtures of small polar molecules such as amides, alcohols, dimethyl sulfoxide, or ions in water. These liquids have been the focus of fundamental studies due to their complex intermolecular interactions as well as their broad applications in chemistry, medicine, and materials science. ACoSs are fully miscible at the macroscopic level but exhibit nanometer-scale spatial heterogeneity. ACoSs have recently received renewed attention within the chemical physics community as model systems to explore the relationship between intermolecular interactions and microscopic liquid-liquid phase separation. In this perspective, we provide an overview of ACoS spatial segregation, dynamic heterogeneity, and multiscale relaxation dynamics. We describe emerging approaches to characterize liquid microstructure, H-bond networks, and dynamics using modern experimental tools combined with molecular dynamics simulations and network-based analysis techniques.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry, University of Texas at Austin, Austin, Texas 19104, USA
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas 19104, USA
| |
Collapse
|
8
|
Primorac T, Požar M, Sokolić F, Zoranić L. The influence of binary mixtures' structuring on the calculation of Kirkwood-Buff integrals: A molecular dynamics study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Costanzo S, Banc A, Louhichi A, Chauveau E, Wu B, Morel MH, Ramos L. Tailoring the Viscoelasticity of Polymer Gels of Gluten Proteins through Solvent Quality. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Salvatore Costanzo
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Amélie Banc
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Ameur Louhichi
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Edouard Chauveau
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Baohu Wu
- Forschungszentrum Jülich GmbH JCNS am MLZ,Lichtenbergstr. 1, Garching 85748, Germany
| | - Marie-Hélène Morel
- Ingénierie des Agro-Polymères et Technologies Emergentes (IATE), Univ. Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - Laurence Ramos
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| |
Collapse
|
10
|
López-Bueno C, Suárez-Rodríguez M, Amigo A, Rivadulla F. Hydrophobic solvation increases thermal conductivity of water. Phys Chem Chem Phys 2020; 22:21094-21098. [PMID: 32945315 DOI: 10.1039/d0cp03778h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction of water with small alcohols can be used as a model for understanding hydrophobic solvation of larger and more complex amphiphilic molecules. Despite its apparent simplicity, water/ethanol mixtures show important anomalies in several of their properties, like specific heat or partial molar volume, whose precise origin are still a matter of debate. Here we report high-resolution thermal conductivity, compressibility, and IR-spectroscopy data for water/ethanol solutions showing three distinct regions of solvation, related to changes in the H-bond network. Notably, the thermal conductivity shows a surprising increase of ≈3.1% with respect to pure water at dilute concentrations of ethanol (x = 0.025), which suggests a strengthening of H-bond network of water. Our results prove that the rate of energy transfer in water can be increased by hydrophobic solvation, due to the cooperative nature of the H-bond network.
Collapse
Affiliation(s)
- Carlos López-Bueno
- CIQUS, Centro de Investigación en Química Biolóxica e Materiais Moleculares, Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain.
| | | | | | | |
Collapse
|
11
|
Halder R, Jana B. Exploring the role of hydrophilic amino acids in unfolding of protein in aqueous ethanol solution. Proteins 2020; 89:116-125. [PMID: 32860277 DOI: 10.1002/prot.25999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 08/07/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
Hydrophobic association is the key contributor behind the formation of well packed core of a protein which is often believed to be an important step for folding from an unfolded chain to its compact functional form. While most of the protein folding/unfolding studies have evaluated the changes in the hydrophobic interactions during chemical denaturation, the role of hydrophilic amino acids in such processes are not discussed in detail. Here we report the role of the hydrophilic amino acids behind ethanol induced unfolding of protein. Using free energy simulations, we show that chicken villin head piece (HP-36) protein unfolds gradually in presence of water-ethanol binary mixture with increasing composition of ethanol. However, upon mutation of hydrophilic amino acids by glycine while keeping the hydrophobic amino acids intact, the compact state of the protein is found to be stable at all compositions with gradual flattening of the free energy landscape upon increasing compositions. The local environment around the protein in terms of ethanol/water number significantly differs in wild type protein compared to the mutated protein. The calculated Wyman-Tanford preferential binding coefficient of ethanol for wild type protein reveals that a greater number of cosolutes (here ethanol) bind to the unfolded state compared to its folded state. However, no significant increase in binding coefficient of ethanol at the unfolded state is found for mutated protein. Local-bulk partition coefficient calculation also suggests similar scenarios. Our results reveal that the weakening of hydrophobic interactions in aqueous ethanol solution along with larger preferential binding of ethanol to the unfolded state mediated by hydrophilic amino acids combinedly helps unfolding of protein in aqueous ethanol solution.
Collapse
Affiliation(s)
- Ritaban Halder
- School of Chemical Sciences, Indian Association for the cultivation of Science, Jadavpur, Kolkata, West Bengal, India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the cultivation of Science, Jadavpur, Kolkata, West Bengal, India
| |
Collapse
|
12
|
Halder R, Jana B. On the Correlation between Pair Hydrophobicity and Mixing Enthalpies in Water–Alcohol Binary Mixtures. J Phys Chem B 2020; 124:8023-8031. [DOI: 10.1021/acs.jpcb.0c05952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ritaban Halder
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
13
|
Erimban S, Daschakraborty S. Translocation of a hydroxyl functionalized carbon dot across a lipid bilayer: an all-atom molecular dynamics simulation study. Phys Chem Chem Phys 2020; 22:6335-6350. [DOI: 10.1039/c9cp05999g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Passive permeation of CD across lipid bilayer is almost impossible. Forced permeation results membrane rupture.
Collapse
Affiliation(s)
- Shakkira Erimban
- Department of Chemistry
- Indian Institute of Technology Patna
- Bihar 801106
- India
| | | |
Collapse
|
14
|
Parui S, Jana B. Relative Solvent Exposure of the Alpha-Helix and Beta-Sheet in Water Determines the Initial Stages of Urea and Guanidinium Chloride-Induced Denaturation of Alpha/Beta Proteins. J Phys Chem B 2019; 123:8889-8900. [DOI: 10.1021/acs.jpcb.9b06859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sridip Parui
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
15
|
Parui S, Jana B. Factors Promoting the Formation of Clathrate-Like Ordering of Water in Biomolecular Structure at Ambient Temperature and Pressure. J Phys Chem B 2019; 123:811-824. [PMID: 30605607 DOI: 10.1021/acs.jpcb.8b11172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Clathrate hydrate forms when a hydrophobic molecule is entrapped inside a water cage or cavity. Although biomolecular structures also have hydrophobic patches, clathrate-like water is found in only a limited number of biomolecules. Also, while clathrate hydrates form at low temperature and moderately higher pressure, clathrate-like water is observed in biomolecular structure at ambient temperature and pressure. These indicate presence of other factors along with hydrophobic environment behind the formation of clathrate-like water in biomolecules. In the current study, we presented a systematic approach to explore the factors behind the formation of clathrate-like water in biomolecules by means of molecular dynamics simulation of a model protein, maxi, which is a naturally occurring nanopore and has clathrate-like water inside the pore. Removal of either confinement or hydrophobic environment results in the disappearance of clathrate-like water ordering, indicating a coupled role of these two factors. Apart from these two factors, clathrate-like water ordering also requires anchoring groups that can stabilize the clathrate-like water through hydrogen bonding. Our results uncover crucial factors for the stabilization of clathrate-like ordering in biomolecular structure which can be used for the development of new biomolecular structure promoting clathrate formation.
Collapse
Affiliation(s)
- Sridip Parui
- School of Chemical Sciences , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032 , India
| | - Biman Jana
- School of Chemical Sciences , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032 , India
| |
Collapse
|
16
|
Enami S, Ishizuka S, Colussi AJ. Chemical signatures of surface microheterogeneity on liquid mixtures. J Chem Phys 2019; 150:024702. [PMID: 30646725 DOI: 10.1063/1.5055684] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Many chemical reactions in Nature, the laboratory, and chemical industry occur in solvent mixtures that bring together species of dissimilar solubilities. Solvent mixtures are visually homogeneous, but are not randomly mixed at the molecular scale. In the all-important binary water-hydrotrope mixtures, small-angle neutron and dynamic light scattering experiments reveal the existence of short-lived (<50 ps), short-ranged (∼1 nm) concentration fluctuations. The presence of hydrophobic solutes stabilizes and extends such fluctuations into persistent, mesoscopic (10-100 nm) inhomogeneities. While the existence of inhomogeneities is well established, their impacts on reactivity are not fully understood. Here, we search for chemical signatures of inhomogeneities on the surfaces of W:X mixtures (W = water; X = acetonitrile, tetrahydrofuran, or 1,4-dioxane) by studying the reactions of Criegee intermediates (CIs) generated in situ from O3(g) addition to a hydrophobic olefin (OL) solute. Once formed, CIs isomerize to functionalized carboxylic acids (FC) or add water to produce α-hydroxy-hydroperoxides (HH), as detected by surface-specific, online pneumatic ionization mass spectrometry. Since only the formation of HH requires the presence of water, the dependence of the R = HH/FC ratio on water molar fraction x w expresses the accessibility of water to CIs on the surfaces of mixtures. The finding that R increases quasi-exponentially with x w in all solvent mixtures is consistent with CIs being preferentially produced (from their OL hydrophobic precursor) in X-rich, long-lived OL:X m W n interfacial clusters, rather than randomly dispersed on W:X surfaces. R vs x w dependences therefore reflect the average ⟨m, n⟩ composition of OL:X m W n interfacial clusters, as weighted by cluster reorganization dynamics. Water in large, rigid clusters could be less accessible to CIs than in smaller but more flexible clusters of lower water content. Since mesoscale inhomogeneities are intrinsic to most solvent mixtures, these phenomena should be quite general.
Collapse
Affiliation(s)
- Shinichi Enami
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| | - Shinnosuke Ishizuka
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| | - Agustín J Colussi
- Linde Center for Global Environmental Science, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
17
|
Dubey V, Daschakraborty S. Influence of glycerol on the cooling effect of pair hydrophobicity in water: relevance to proteins’ stabilization at low temperature. Phys Chem Chem Phys 2019; 21:800-812. [DOI: 10.1039/c8cp06513f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glycerol reduces the cooling effect of pair hydrophobicity (reduction of hydrophobicity with decreasing temperature) in water.
Collapse
Affiliation(s)
- Vikas Dubey
- Department of Chemistry
- Indian Institute of Technology Patna
- Bihar 801106
- India
| | | |
Collapse
|
18
|
Parui S, Jana B. Molecular Insights into the Unusual Structure of an Antifreeze Protein with a Hydrated Core. J Phys Chem B 2018; 122:9827-9839. [PMID: 30286600 DOI: 10.1021/acs.jpcb.8b05350] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The primary driving force for protein folding is the formation of a well-packed, anhydrous core. However, recently, the crystal structure of an antifreeze protein, maxi, has been resolved where the core of the protein is filled with water, which apparently contradicts the existing notion of protein folding. Here, we have performed standard molecular dynamics (MD) simulation, replica exchange MD (REMD) simulation, and umbrella sampling using TIP4P water at various temperatures (300, 260, and 240 K) to explore the origin of this unusual structural feature. It is evident from standard MD and REMD simulations that the protein is found to be stable at 240 K in its unusual state. The core of protein has two layers of semi-clathrate water separating the methyl groups of alanine residues from different helical strands. However, with increasing temperature (260 and 300 K), the stability decreases as the core becomes dehydrated, and methyl groups of alanine are tightly packed driven by hydrophobic interactions. Calculation of the potential of mean force by an umbrella sampling technique between a pair of model hydrophobes resembling maxi protein at 240 K shows the stabilization of second solvent-separated minima (SSM), which provides a thermodynamic rationale of the unusual structural feature in terms of weakening of the hydrophobic interaction. Because the stabilization of SSMs is implicated for cold denaturation, it suggests that the maxi protein is so designed by nature where the cold denatured-like state becomes the biologically active form as it works near or below the freezing point of water.
Collapse
Affiliation(s)
- Sridip Parui
- Department of Physical Chemistry , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032 , India
| | - Biman Jana
- Department of Physical Chemistry , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032 , India
| |
Collapse
|
19
|
Jahan I, Nayeem SM. Effect of Urea, Arginine, and Ethanol Concentration on Aggregation of 179CVNITV 184 Fragment of Sheep Prion Protein. ACS OMEGA 2018; 3:11727-11741. [PMID: 30320270 PMCID: PMC6173503 DOI: 10.1021/acsomega.8b00875] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Understanding protein aggregation is of utmost importance as it is responsible for causing several neurodegenerative diseases and one of the serious impediments in large-scale biopharmaceutical production. The prion protein is responsible for pathological states in fatal transmissible spongiform conditions, such as Creutzfeldt-Jakob disease and bovine spongiform encephalopathy. The peptide fragment 178-191 of Syrian hamster prion protein is known to be amyloidogenic. Here, we identified the fragment 179CVNITV184 as an aggregation-prone fragment in sheep prion protein. This fragment is conserved sequence among sheep and Syrian hamster prion protein and also falls in the previously identified amyloidogenic sequence. The mechanistic details of the aggregation behavior are analyzed in three different concentrations of urea, arginine, and ethanol. Urea and arginine are found to be aggregation suppressors, but ethanol enhances the protein aggregation through β-sheet formation. We have also analyzed the influence of these osmolyte on water dynamics in the presence of the octamer of this aggregation-prone fragment and correlated this water dynamics with the aggregation behavior of the octamer.
Collapse
|