Davidson RA, Miller JS. Pressure Dependence of the Magnetic Ordering Temperature (
Tc) for the Na
2Mn[Mn(CN)
6] Noncubic Prussian Blue Analogue.
Inorg Chem 2021;
60:12766-12771. [PMID:
34492765 DOI:
10.1021/acs.inorgchem.1c00777]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pressure dependence of the magnetic properties of rhombohedral Na2Mn[Mn(CN)6] up to 10 kbar has been studied. The magnetic ordering temperature, Tc, for Na2Mn[Mn(CN)6] reversibly increases with increasing applied hydrostatic pressure, P, by 9.0 K (15.2%) to 68 K at 10 kbar with an average rate of increase, dTc/dP, of 0.86 K/kbar. The magnetization at 50 kOe and remanent magnetization, Mr(H), remain constant with an average value of 13,100 ± 200 and 8500 ± 200 emuOe/mol. The coercive field Hcr increases by 12% from 13,400 to 15,000 Oe. The increase and rate of increase of Tc for rhombohedral Na2Mn[Mn(CN)6] are reduced with respect to monoclinic A2Mn[Mn(CN)6] (A = K and Rb), but they are still greater than those of cubic Cs2Mn[Mn(CN)6]. This is attributed to the compression of the MnNC framework bonding without decreasing ∠MnII-N≡C, maintaining the unit cell in accord with cubic A = Cs at lower applied pressures, and not due to reduction in ∠MnII-N≡C, which correlates with increasing Tc that is reported for A = K and Rb as well as Cs at higher applied pressures.
Collapse