1
|
Zhang JY, Wang LL, Zhu XQ. Characteristic Activity Parameters of Electron Donors and Electron Acceptors. ACS PHYSICAL CHEMISTRY AU 2023; 3:358-373. [PMID: 37520315 PMCID: PMC10375887 DOI: 10.1021/acsphyschemau.3c00001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 08/01/2023]
Abstract
It is well-known that for an electron transfer reaction, the electron-donating ability of electron donors and the electron-accepting ability of electron acceptors can be quantitatively described by the oxidation potential of electron donors and the reduction potential of electron acceptors. However, for an electron transfer reaction, the electron-donating activity of electron donors and the electron-accepting activity of electron acceptors cannot be quantitatively described by a characteristic parameter of electron donors and a characteristic parameter of electron acceptors till now. In this paper, a characteristic activity parameter of electron donors and electron acceptors named as their thermo-kinetic parameter is proposed to quantify the electron-donating activity of electron donors and the electron-accepting activity of electron acceptors in electron transfer reactions. At the same time, the thermo-kinetic parameter values of 70 well-known electron donors and the corresponding 70 conjugated electron acceptors in acetonitrile at 298 K are determined. The activation free energies of 4900 typical electron transfer reactions in acetonitrile at 298 K are estimated according to the thermo-kinetic parameter values of 70 electron donors and 70 conjugated electron acceptors, and the estimated results have received good verification of the corresponding independent experimental measurements. The physical meaning of the thermo-kinetic parameter is examined. The relationship of the thermo-kinetic parameter with the corresponding redox potential as well as the relationship of the activation free energy with the corresponding thermodynamic driving force of electron transfer reactions is examined. The results show that the observed relationships between the thermo-kinetic parameters and the redox potentials as well as the observed relationships between the activation free energy and the thermodynamic driving force depend on the choice of electron donors and electron acceptors as well as the electron transfer reactions. The greatest contribution of this paper is to realize the symmetry and unification of kinetic equations and the corresponding thermodynamic equations of electron transfer reactions.
Collapse
|
2
|
Thermodynamic and Kinetic Studies of the Activities of Aldehydic C−H Bonds toward Their H‐Atom Transfer Reactions. ChemistrySelect 2023. [DOI: 10.1002/slct.202204789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
3
|
Fu YH, Zhang Y, Wang F, Zhao L, Shen GB, Zhu XQ. Quantitative evaluation of the actual hydrogen atom donating activities of O-H bonds in phenols: structure-activity relationship. RSC Adv 2023; 13:3295-3305. [PMID: 36756400 PMCID: PMC9869660 DOI: 10.1039/d2ra06877j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/31/2022] [Indexed: 01/25/2023] Open
Abstract
The H-donating activity of phenol and the H-abstraction activity of phenol radicals have been extensively studied. In this article, the second-order rate constants of 25 hydrogen atom transfer (HAT) reactions between phenols and PINO and DPPH radicals in acetonitrile at 298 K were studied. Thermo-kinetic parameters ΔG ≠o(XH) were obtained using a kinetic equation [ΔG ≠ XH/Y = ΔG ≠o(XH) + ΔG ≠o(Y)]. Bond dissociation free energies ΔG o(XH) were calculated by the iBonD HM method, whose details are available at https://pka.luoszgroup.com/bde_prediction. Intrinsic resistance energies ΔG ≠ XH/X and ΔG ≠o(X) were determined as ΔG ≠o(XH) and ΔG o(XH) were available. ΔG o(XH), ΔG ≠ XH/X, ΔG ≠o(XH) and ΔG ≠o(X) were used to assess the H-donating abilities of the studied phenols and the H-abstraction abilities of phenol radicals in thermodynamics, kinetics and actual HAT reactions. The effect of structures on these four parameters was discussed. The reliabilities of ΔG ≠o(XH) and ΔG ≠o(X) were examined. The difference between the method of determining ΔG ≠ XH/X mentioned in this study and the dynamic nuclear magnetic method mentioned in the literature was studied. Via this study, not only ΔG o(XH), ΔG ≠ XH/X, ΔG ≠o(XH) and ΔG ≠o(X) of phenols could be quantitatively evaluated, but also the structure-activity relationship of phenols is clearly demonstrated. Moreover, it lays the foundation for designing and synthesizing more antioxidants and radicals.
Collapse
Affiliation(s)
- Yan-Hua Fu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology Anyang Henan 455000 China
| | - Yanwei Zhang
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology Anyang Henan 455000 China
| | - Fang Wang
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology Anyang Henan 455000 China
| | - Ling Zhao
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology Anyang Henan 455000 China
| | - Guang-Bin Shen
- School of Medical Engineering, Jining Medical UniversityJiningShandong272000P. R. China
| | - Xiao-Qing Zhu
- Department of Chemistry, Nankai UniversityTianjin300071China
| |
Collapse
|
4
|
Fu Y, Yang L, Zhou Z, Jia T, Shen G, Zhu X. Comparison of Thermodynamic Energies for Elementary Steps of Anionic Hydrides to Release Hydride Ions in Acetonitrile. ChemistrySelect 2022. [DOI: 10.1002/slct.202203626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yan‐Hua Fu
- College of Chemistry and Environmental Engineering Anyang Institute of Technology Anyang Henan 455000 China
| | - Li‐Guo Yang
- College of Chemistry and Environmental Engineering Anyang Institute of Technology Anyang Henan 455000 China
| | - Zhong‐Yuan Zhou
- College of Chemistry and Environmental Engineering Anyang Institute of Technology Anyang Henan 455000 China
| | - Taixuan Jia
- College of Chemistry and Environmental Engineering Anyang Institute of Technology Anyang Henan 455000 China
| | - Guang‐Bin Shen
- School of Medical Engineering Jining Medical University Jining Shandong 272000 P. R. China
| | - Xiao‐Qing Zhu
- Department of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
5
|
Comparison between 1,2-Dihydropyridine and 1,4-Dihydropyridine on Hydride-Donating Ability and Activity. Molecules 2022; 27:molecules27175382. [PMID: 36080150 PMCID: PMC9457676 DOI: 10.3390/molecules27175382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
In this paper, detailed comparisons of the driving force in thermodynamics and intrinsic force in the kinetics of 1,2-dihydropyridine and 1,4-dihydropyridine isomers of PNAH, HEH, and PYH in hydride transfer reactions are made. For 1,2-PNAH and 1,4-PNAH, the values of the thermodynamic driving forces, kinetic intrinsic barriers, and thermo-kinetic parameters are 60.50 and 61.90 kcal/mol, 27.92 and 26.34 kcal/mol, and 44.21 and 44.12 kcal/mol, respectively. For 1,2-HEH and 1,4-HEH, the values of the thermodynamic driving forces, kinetic intrinsic barriers, and thermo-kinetic parameters are 63.40 and 65.00 kcal/mol, 31.68 and 34.96 kcal/mol, and 47.54 and 49.98 kcal/mol, respectively. For 1,2-PYH and 1,4-PYH, the order of thermodynamic driving forces, kinetic intrinsic barriers, and thermo-kinetic parameters are 69.90 and 72.60 kcal/mol, 33.06 and 25.74 kcal/mol, and 51.48 and 49.17 kcal/mol, respectively. It is not difficult to find that thermodynamically favorable structures are not necessarily kinetically favorable. In addition, according to the analysis of thermo-kinetic parameters, 1,4-PNAH, 1,2-HEH, and 1,4-PYH have a strong hydride-donating ability in actual chemical reactions.
Collapse
|
6
|
Fu Y, Wang K, Shen G, Zhu X. Quantitative Comparison of the Actual Antioxidant Activity of Vitamin C, Vitamin E and NADH. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yan‐Hua Fu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology Anyang Henan China
| | - Kai Wang
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology Anyang Henan China
| | - Guang‐Bin Shen
- School of Medical Engineering Jining Medical University Jining Shandong P.R.China
| | - Xiao‐Qing Zhu
- The State Key Laboratory of Elemento‐Organic Chemistry, College ofChemistry Nankai University Tianjin China
| |
Collapse
|
7
|
Fu YH, Wang Z, Wang K, Shen GB, Zhu XQ. Evaluation and comparison of antioxidant abilities of five bioactive molecules with C–H and O–H bonds in thermodynamics and kinetics. RSC Adv 2022; 12:27389-27395. [PMID: 36275999 PMCID: PMC9513755 DOI: 10.1039/d2ra04839f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/10/2022] [Indexed: 11/21/2022] Open
Abstract
In this work, the antioxidant abilities of NADH coenzyme analogue BNAH, F420 reduction prototype analogue F420H, vitamin C analogue iAscH−, caffeic acid, and (+)-catechin in acetonitrile in chemical reactions were studied and discussed.
Collapse
Affiliation(s)
- Yan-Hua Fu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Zhen Wang
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Kai Wang
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Guang-Bin Shen
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Xiao-Qing Zhu
- Department of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
8
|
Shen GB, Qian BC, Fu YH, Zhu XQ. Thermodynamics of the elementary steps of organic hydride chemistry determined in acetonitrile and their applications. Org Chem Front 2022. [DOI: 10.1039/d2qo01310j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review focuses on the thermodynamics of the elementary step of 421 organic hydrides and unsaturated compounds releasing or accepting hydride or hydrogen determined in acetonitrile as well as their potential applications.
Collapse
Affiliation(s)
- Guang-Bin Shen
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Bao-Chen Qian
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Yan-Hua Fu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Xiao-Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
9
|
Zhang LY, Geng JB, Wang NX, Wu YH, Yan Z, Xu BC, Xing Y. The Efficient Synthesis of 2-(3-Carbamoylpyridine-2-yl) Nicotinamide Pyridine
Salts. LETT ORG CHEM 2022. [DOI: 10.2174/1570178618666210706112141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
The synthesis of axially chiral compounds has attracted a great deal of attention in
recent years. Herein, an efficient and economical synthetic route has been developed for 2-(3-
carbamoylpyridin-2-yl) nicotinamide pyridine salts, axially chiral compounds. The starting material
1,10-phenanthroline is readily available. In this study, 2-(3-carbamoylpyridin-2-yl) nicotinamide
pyridine salts are obtained in moderate to good yields. This protocol includes simple
operations and has easy scalability. In addition, the axial chirality of the products is also preliminary
studied.
Collapse
Affiliation(s)
- Lei-Yang Zhang
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences,
Beijing, 100190, China
| | - Jing-Bo Geng
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences,
Beijing, 100190, China
| | - Nai-Xing Wang
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences,
Beijing, 100190, China
| | - Yue-Hua Wu
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences,
Beijing, 100190, China
| | - Zhan Yan
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences,
Beijing, 100190, China
| | - Bao-Cai Xu
- School of Food and Chemical Engineering, Beijing Technology and Business University,
Beijing, 100048, China
| | - Yalan Xing
- Department of Chemistry, William Paterson University of New Jersey, New Jersey, 07470,
United States
| |
Collapse
|
10
|
|
11
|
Li G, Yang SL, Liu WS, Guo MY, Liu XY, Bu R, Gao EQ. Photoinduced versus spontaneous host–guest electron transfer within a MOF and chromic/luminescent response. Inorg Chem Front 2021. [DOI: 10.1039/d1qi01079d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The MOF shows charge-transfer sensitized Eu(iii) emission and spontaneous/photoinduced guest-to-host electron transfer, which allow chromic and luminescent sensing of NH3 (luminescence turn-off) and O2 (luminescence turn-on).
Collapse
Affiliation(s)
- Gen Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shuai-Liang Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Wan-Shan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Meng-Yue Guo
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China
| | - Xiao-Yan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ran Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
12
|
Zhang J, Yang J, Cheng J. A Nucleophilicity Scale for the Reactivity of Diazaphospholenium Hydrides: Structural Insights and Synthetic Applications. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jingjing Zhang
- Center of Basic Molecular ScienceDepartment of ChemistryTsinghua University Beijing 100084 China
| | - Jin‐Dong Yang
- Center of Basic Molecular ScienceDepartment of ChemistryTsinghua University Beijing 100084 China
| | - Jin‐Pei Cheng
- Center of Basic Molecular ScienceDepartment of ChemistryTsinghua University Beijing 100084 China
- State Key Laboratory of Elemento-organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| |
Collapse
|
13
|
Zhang J, Yang JD, Cheng JP. A Nucleophilicity Scale for the Reactivity of Diazaphospholenium Hydrides: Structural Insights and Synthetic Applications. Angew Chem Int Ed Engl 2019; 58:5983-5987. [PMID: 30805968 DOI: 10.1002/anie.201901456] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Indexed: 01/24/2023]
Abstract
Nucleophilicity parameters (N, sN ) of a group of representative diazaphospholenium hydrides were derived by kinetic investigations of their hydride transfer to a series of reference electrophiles with known electrophilicity (E) values, using the Mayr equation log k2 =sN (N+E). The N scale covers over ten N units, ranging from the most reactive hydride donor (N=25.5) to the least of the scale (N=13.5). This discloses the highest N value ever quantified in terms of Mayr's nucleophilicity scales reported for neutral transition-metal-free hydride donors and implies an exceptional reactivity of this reagent. Even the least reactive hydride donor of this series is still a better hydride donor than those of many other nucleophiles such as the C-H, B-H, Si-H and transition-metal M-H hydride donors. Structure-reactivity analysis reveals that the outstanding hydricity of 2-H-1,3,2-diazaphospholene benefits from the unsaturated skeleton.
Collapse
Affiliation(s)
- Jingjing Zhang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jin-Dong Yang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jin-Pei Cheng
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, 100084, China.,State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
14
|
Schröder J, Himmel D, Kratzert D, Radtke V, Richert S, Weber S, Böttcher T. Isolation of a stable pyridine radical anion. Chem Commun (Camb) 2019; 55:1322-1325. [DOI: 10.1039/c8cc09700c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For almost 150 years, pyridine radical anions have been described as elusive transient species that cannot be isolated due to dimerization and/or subsequent decomposition reactions. In this work the first example of a stable pyridine radical anion is presented.
Collapse
Affiliation(s)
- Jan Schröder
- Institut für Anorganische und Analytische Chemie
- Universität Freiburg
- 79104 Freiburg
- Germany
| | - Daniel Himmel
- Institut für Anorganische und Analytische Chemie
- Universität Freiburg
- 79104 Freiburg
- Germany
| | - Daniel Kratzert
- Institut für Anorganische und Analytische Chemie
- Universität Freiburg
- 79104 Freiburg
- Germany
| | - Valentin Radtke
- Institut für Anorganische und Analytische Chemie
- Universität Freiburg
- 79104 Freiburg
- Germany
| | - Sabine Richert
- Institut für Physikalische Chemie
- Universität Freiburg
- 79104 Freiburg
- Germany
| | - Stefan Weber
- Institut für Physikalische Chemie
- Universität Freiburg
- 79104 Freiburg
- Germany
| | - Tobias Böttcher
- Institut für Anorganische und Analytische Chemie
- Universität Freiburg
- 79104 Freiburg
- Germany
| |
Collapse
|