1
|
Chen XR, Dixit K, Yang Y, McDermott MI, Imam HT, Bankaitis VA, Igumenova TI. A novel bivalent interaction mode underlies a non-catalytic mechanism for Pin1-mediated protein kinase C regulation. eLife 2024; 13:e92884. [PMID: 38687676 PMCID: PMC11060717 DOI: 10.7554/elife.92884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/08/2024] [Indexed: 05/02/2024] Open
Abstract
Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P3 defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1. Here, we show that contrary to prevailing models, Pin1 does not regulate conventional PKC isoforms α and βII via a canonical cis-trans isomerization of the peptidyl-prolyl bond. Rather, Pin1 acts as a PKC binding partner that controls PKC activity via sequestration of the C-terminal tail of the kinase. The high-resolution structure of full-length Pin1 complexed to the C-terminal tail of PKCβII reveals that a novel bivalent interaction mode underlies the non-catalytic mode of Pin1 action. Specifically, Pin1 adopts a conformation in which it uses the WW and PPIase domains to engage two conserved phosphorylated PKC motifs, the turn motif and hydrophobic motif, respectively. Hydrophobic motif is a non-canonical Pin1-interacting element. The structural information combined with the results of extensive binding studies and experiments in cultured cells suggest that non-catalytic mechanisms represent unappreciated modes of Pin1-mediated regulation of AGC kinases and other key enzymes/substrates.
Collapse
Affiliation(s)
- Xiao-Ru Chen
- Department of Biochemistry & Biophysics, Texas A&M UniversityCollege StationUnited States
| | - Karuna Dixit
- Department of Biochemistry & Biophysics, Texas A&M UniversityCollege StationUnited States
| | - Yuan Yang
- Department of Biochemistry & Biophysics, Texas A&M UniversityCollege StationUnited States
| | - Mark I McDermott
- Department of Cell Biology & Genetics, Texas A&M UniversityCollege StationUnited States
| | - Hasan Tanvir Imam
- Department of Biochemistry & Biophysics, Texas A&M UniversityCollege StationUnited States
| | - Vytas A Bankaitis
- Department of Cell Biology & Genetics, Texas A&M UniversityCollege StationUnited States
| | - Tatyana I Igumenova
- Department of Biochemistry & Biophysics, Texas A&M UniversityCollege StationUnited States
- Department of Cell Biology & Genetics, Texas A&M UniversityCollege StationUnited States
| |
Collapse
|
2
|
Yao XQ, Hamelberg D. Dissecting the Allosteric Fine-Tuning of Enzyme Catalysis. JACS AU 2024; 4:837-846. [PMID: 38425926 PMCID: PMC10900222 DOI: 10.1021/jacsau.3c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Fully understanding the mechanism of allosteric regulation in biomolecules requires separating and examining all of the involved factors. In enzyme catalysis, allosteric effector binding shifts the structure and dynamics of the active site, leading to modified energetic (e.g., energy barrier) and dynamical (e.g., diffusion coefficient) factors underlying the catalyzed reaction rate. Such modifications can be subtle and dependent on the type of allosteric effector, representing a fine-tuning of protein function. The microscopic description of allosteric regulation at the level of function-dictating factors has prospective applications in fundamental and pharmaceutical sciences, which is, however, largely missing so far. Here, we characterize the allosteric fine-tuning of enzyme catalysis, using human Pin1 as an example, by performing more than half-millisecond all-atom molecular dynamics simulations. Changes of reaction kinetics and the dictating factors, including the free energy surface along the reaction coordinate and the diffusion coefficient of the reaction dynamics, under various enzyme and allosteric effector binding conditions are examined. Our results suggest equal importance of the energetic and dynamical factors, both of which can be modulated allosterically, and the combined effect determines the final allosteric output. We also reveal the potential dynamic basis for allosteric modulation using an advanced statistical technique to detect function-related conformational dynamics. Methods developed in this work can be applied to other allosteric systems.
Collapse
Affiliation(s)
- Xin-Qiu Yao
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United
States
- Department
of Chemistry, University of Nebraska Omaha, Omaha, Nebraska 68182-0266, United
States
| | - Donald Hamelberg
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United
States
| |
Collapse
|
3
|
Chen XR, Dixit K, Yang Y, McDermott MI, Imam HT, Bankaitis VA, Igumenova TI. A novel bivalent interaction mode underlies a non-catalytic mechanism for Pin1-mediated Protein Kinase C regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558341. [PMID: 37781616 PMCID: PMC10541119 DOI: 10.1101/2023.09.18.558341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P3 defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1. Here, we show that contrary to prevailing models, Pin1 does not regulate conventional PKC isoforms α and βII via a canonical cis-trans isomerization of the peptidyl-prolyl bond. Rather, Pin1 acts as a PKC binding partner that controls PKC activity via sequestration of the C-terminal tail of the kinase. The high-resolution structure of Pin1 complexed to the C-terminal tail of PKCβII reveals that a novel bivalent interaction mode underlies the non-catalytic mode of Pin1 action. Specifically, Pin1 adopts a compact conformation in which it engages two conserved phosphorylated PKC motifs, the turn motif and hydrophobic motif, the latter being a non-canonical Pin1-interacting element. The structural information, combined with the results of extensive binding studies and in vivo experiments suggest that non-catalytic mechanisms represent unappreciated modes of Pin1-mediated regulation of AGC kinases and other key enzymes/substrates.
Collapse
|
4
|
Chen J. A Specific pSer/Thr-Pro Motif Generates Interdomain Communication Bifurcations of Two Modes of Pin1 in Solution Nuclear Magnetic Resonance. Biochemistry 2022; 61:1167-1180. [PMID: 35648841 DOI: 10.1021/acs.biochem.2c00255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Peptides mediate the interdomain communication of Pin1 (peptidyl-prolyl cis-trans isomerase) and can regulate its conformation and biochemical functions, providing an idea for drug design using Pin1. Two template peptide sequences have been widely used in the extended or compact state of Pin1 (Cdc25C, E-Q-P-L-pT-P-V-T-D-L; Pintide, W-F-Y-pS-P-R). The way in which specific pSer/Thr-Pro peptides regulate interdomain communication to achieve the opposite state is not clear. In this study, we subdivided the sequence composition of eight types of modified peptides and investigated the interaction with Pin1 by solution nuclear magnetic resonance and molecular dynamics. Demonstrating sequence dependence on the pSer-Pro or pThr-Pro motif and different residues in anchoring the WW domain, the Pin peptide (Pintide, PintideT, Pin25C, and Pin25CT) transmits this concentration accumulation to the PPIase domain, thus exhibiting two anchoring tendencies. However, the Cdc peptide (Cdc25C, Cdc25CS, Cdctide, and CdctideS) has a low binding energy that makes it difficult for the conformation to reach a steady state. In addition, Pin1 is influenced by both compact and extended states, regulated precisely by the sequence as well as by threonine or serine. These results provide new insight into the interdomain communication of Pin1 via pSer/Thr-Pro peptide binding.
Collapse
Affiliation(s)
- Jingqiu Chen
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| |
Collapse
|
5
|
Alcázar JJ, Márquez E, García-Río L, Robles-Muñoz A, Fierro A, Santos JG, Aliaga ME. Changes in Protonation Sites of 3-Styryl Derivatives of 7-(dialkylamino)-aza-coumarin Dyes Induced by Cucurbit[7]uril. Front Chem 2022; 10:870137. [PMID: 35494653 PMCID: PMC9046931 DOI: 10.3389/fchem.2022.870137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
The incorporation of a guest, with different basic sites, into an organized system (host), such as macrocycles, could stabilize, detect, or promote the formation of a certain protomer. In this context, this work aimed to study the influence of cucurbit[7]uril (CB7) on dyes such as 7-(dimethylamino)-aza-coumarins, which have more than one basic site along their molecular structure. For this, three 3-styryl derivatives of 7-(dialkylamino)-aza-coumarin dyes (SAC1-3) were synthesized and characterized by NMR, ESI-HRMS and IR. The spectral behaviour of the SACs in the absence and presence of CB7 was studied. The results showed large shifts in the UV-vis spectrum in acid medium: a hypsochromic shift of ≈5400 cm−1 (SAC1-2) and ≈3500 cm−1 (SAC3) in the absence of CB7 and a bathochromic shift of ≈4500 cm−1 (SAC1-3) in the presence of CB7. The new absorptions at long and short wavelengths were assigned to the corresponding protomers by computational calculations at the density functional theory (DFT) level. Additionally, the binding mode was corroborated by molecular dynamics simulations. Findings revealed that in the presence of CB7 the heterocyclic nitrogen was preferably protonated instead of the dialkylamino group. Namely, CB7 induces a change in the protonation preference at the basic sites of the SACs, as consequence of the molecular recognition by the macrocycle.
Collapse
Affiliation(s)
- Jackson J. Alcázar
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Edgar Márquez
- Departamento de Química y Biología, Facultad de Ciencias Exactas, Grupo de Investigaciones en Química y Biología, Universidad Del Norte, Barranquilla, Colombia
| | - Luis García-Río
- Departamento de Química Física, Centro de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago, Santiago, Spain
| | - Agustín Robles-Muñoz
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angélica Fierro
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José G. Santos
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: José G. Santos, ; Margarita E. Aliaga,
| | - Margarita E. Aliaga
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: José G. Santos, ; Margarita E. Aliaga,
| |
Collapse
|
6
|
Iyer A, Reis RAG, Gannavaram S, Momin M, Spring-Connell AM, Orozco-Gonzalez Y, Agniswamy J, Hamelberg D, Weber IT, Gozem S, Wang S, Germann MW, Gadda G. A Single-Point Mutation in d-Arginine Dehydrogenase Unlocks a Transient Conformational State Resulting in Altered Cofactor Reactivity. Biochemistry 2021; 60:711-724. [PMID: 33630571 DOI: 10.1021/acs.biochem.1c00054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Proteins are inherently dynamic, and proper enzyme function relies on conformational flexibility. In this study, we demonstrated how an active site residue changes an enzyme's reactivity by modulating fluctuations between conformational states. Replacement of tyrosine 249 (Y249) with phenylalanine in the active site of the flavin-dependent d-arginine dehydrogenase yielded an enzyme with both an active yellow FAD (Y249F-y) and an inactive chemically modified green FAD, identified as 6-OH-FAD (Y249F-g) through various spectroscopic techniques. Structural investigation of Y249F-g and Y249F-y variants by comparison to the wild-type enzyme showed no differences in the overall protein structure and fold. A closer observation of the active site of the Y249F-y enzyme revealed an alternative conformation for some active site residues and the flavin cofactor. Molecular dynamics simulations probed the alternate conformations observed in the Y249F-y enzyme structure and showed that the enzyme variant with FAD samples a metastable conformational state, not available to the wild-type enzyme. Hybrid quantum/molecular mechanical calculations identified differences in flavin electronics between the wild type and the alternate conformation of the Y249F-y enzyme. The computational studies further indicated that the alternate conformation in the Y249F-y enzyme is responsible for the higher spin density at the C6 atom of flavin, which is consistent with the formation of 6-OH-FAD in the variant enzyme. The observations in this study are consistent with an alternate conformational space that results in fine-tuning the microenvironment around a versatile cofactor playing a critical role in enzyme function.
Collapse
Affiliation(s)
- Archana Iyer
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Renata A G Reis
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Swathi Gannavaram
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Mohamed Momin
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | | | | | - Johnson Agniswamy
- Department of Biology, Georgia State University, Atlanta, Georgia 30302, United States
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Irene T Weber
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States.,Department of Biology, Georgia State University, Atlanta, Georgia 30302, United States
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Siming Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Markus W Germann
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States.,Department of Biology, Georgia State University, Atlanta, Georgia 30302, United States
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States.,Department of Biology, Georgia State University, Atlanta, Georgia 30302, United States.,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
7
|
Pu W, Zheng Y, Peng Y. Prolyl Isomerase Pin1 in Human Cancer: Function, Mechanism, and Significance. Front Cell Dev Biol 2020; 8:168. [PMID: 32296699 PMCID: PMC7136398 DOI: 10.3389/fcell.2020.00168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/29/2020] [Indexed: 02/05/2023] Open
Abstract
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) is an evolutionally conserved and unique enzyme that specifically catalyzes the cis-trans isomerization of phosphorylated serine/threonine-proline (pSer/Thr-Pro) motif and, subsequently, induces the conformational change of its substrates. Mounting evidence has demonstrated that Pin1 is widely overexpressed and/or overactivated in cancer, exerting a critical influence on tumor initiation and progression via regulation of the biological activity, protein degradation, or nucleus-cytoplasmic distribution of its substrates. Moreover, Pin1 participates in the cancer hallmarks through activating some oncogenes and growth enhancers, or inactivating some tumor suppressors and growth inhibitors, suggesting that Pin1 could be an attractive target for cancer therapy. In this review, we summarize the findings on the dysregulation, mechanisms, and biological functions of Pin1 in cancer cells, and also discuss the significance and potential applications of Pin1 dysregulation in human cancer.
Collapse
Affiliation(s)
- Wenchen Pu
- Laboratory of Molecular Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yuanyuan Zheng
- Laboratory of Molecular Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yong Peng
- Laboratory of Molecular Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
8
|
Yao XQ, Hamelberg D. Detecting Functional Dynamics in Proteins with Comparative Perturbed-Ensembles Analysis. Acc Chem Res 2019; 52:3455-3464. [PMID: 31793290 DOI: 10.1021/acs.accounts.9b00485] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recent advances have made all-atom molecular dynamics (MD) a powerful tool to sample the conformational energy landscape. There are still however three major challenges in the application of MD to biological systems: accuracy of force field, time scale, and the analysis of simulation trajectories. Significant progress in addressing the first two challenges has been made and extensively reviewed previously. This Account focuses on strategies of analyzing simulation data of biomolecules that also covers ways to properly design simulations and validate simulation results. In particular, we examine an approach named comparative perturbed-ensembles analysis, which we developed to efficiently detect dynamics in protein MD simulations that can be linked to biological functions. In our recent studies, we implemented this approach to understand allosteric regulations in several disease-associated human proteins. The central task of a comparative perturbed-ensembles analysis is to compare two or more conformational ensembles of a system generated by MD simulations under distinct perturbation conditions. Perturbations can be different sequence variations, ligand-binding conditions, and other physical/chemical modifications of the system. Each simulation is long enough (e.g., microsecond-long) to ensure sufficient sampling of the local substate. Then, sophisticated bioinformatic and statistical tools are applied to extract function-related information from the simulation data, including principal component analysis, residue-residue contact analysis, difference contact network analysis (dCNA) based on the graph theory, and statistical analysis of side-chain conformations. Computational findings are further validated with experimental data. By comparing distinct conformational ensembles, functional micro- to millisecond dynamics can be inferred. In contrast, such a time scale is difficult to reach in a single simulation; even when reached for a single condition of a system, it is elusive as to what dynamical motions are related to functions without, for example, comparing free and substrate-bound proteins at the minimum. We illustrate our approach with three examples. First, we discuss using the approach to identify allosteric pathways in cyclophilin A (CypA), a member of a ubiquitous class of peptidyl-prolyl cis-trans isomerase enzymes. By comparing side-chain torsion-angle distributions of CypA in wild-type and mutant forms, we identified three pathways: two are consistent with recent nuclear magnetic resonance experiments, whereas the third is a novel pathway. Second, we show how the approach enables a dynamical-evolution analysis of the human cyclophilin family. In the analysis, both conserved and divergent conformational dynamics across three cyclophilin isoforms (CypA, CypD, and CypE) were summarized. The conserved dynamics led to the discovery of allosteric networks resembling those found in CypA. A residue wise determinant underlying the unique dynamics in CypD was also detected and validated with additional mutational MD simulations. In the third example, we applied the approach to elucidate a peptide sequence-dependent allosteric mechanism in human Pin 1, a phosphorylation-dependent peptidyl-prolyl isomerase. We finally present our outlook of future directions. Especially, we envisage how the approach could help open a new avenue in drug discovery.
Collapse
Affiliation(s)
- Xin-Qiu Yao
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| |
Collapse
|
9
|
Ji M, Ding Y, Li X, Mao N, Chen J. Computational investigation of a ternary model of SnoN-SMAD3-SMAD4 complex. Comput Biol Chem 2019; 83:107159. [PMID: 31743832 DOI: 10.1016/j.compbiolchem.2019.107159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/28/2019] [Accepted: 11/03/2019] [Indexed: 12/18/2022]
Abstract
The transforming growth factor β (TGFβ) plays an essential role in the regulation of cellular processes such as cell proliferation, migration, differentiation, and apoptosis by association with SMAD transcriptional factors that are regulated by the transcriptional regulator SnoN. The crystal structure of SnoN-SMAD4 reveals that SnoN can adopt two binding modes, the open and closed forms, at the interfaces of SMAD4 subunits. Accumulating evidence indicates that SnoN can interact with both SMAD3 and SMAD4 to form a ternary SnoN-SMAD3-SMAD4 complex in the TGFβ signaling pathway. However, how the interaction of SnoN with the SMAD3 and SMAD4 remains unclear. Here, molecular dynamics (MD) simulations and molecular modeling methods were performed to figure out this issue. The simulations reveal that SnoNopen exists in two, open and semi-closed, conformations. Molecular modeling and MD simulation studies suggest that the SnoNclosed form interferes with the SMAD3-SMAD4 protein; in contract, the SnoNopen can form a stable SnoN-SMAD3-SMAD4 complex. These mechanistic mechanisms may help elucidate the detailed engagement of SnoN with two SMAD3 and SMAD4 transcriptional factors in the regulation of TGFβ signaling pathway.
Collapse
Affiliation(s)
- Mingfei Ji
- Department of Urology, Changzheng Hospital, Naval Military Medical University, Shanghai, 200003, China
| | - Yelei Ding
- Department of Urology, Changzheng Hospital, Naval Military Medical University, Shanghai, 200003, China
| | - Xiaolong Li
- Department of Orthopedics, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China.
| | - Ningfang Mao
- Department of Orthopedics, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China.
| | - Jie Chen
- Department of Urology, Changzheng Hospital, Naval Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
10
|
Jinasena D, Simmons R, Gyamfi H, Fitzkee NC. Molecular Mechanism of the Pin1-Histone H1 Interaction. Biochemistry 2019; 58:788-798. [PMID: 30507159 DOI: 10.1021/acs.biochem.8b01036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Pin1 is an essential peptidyl-prolyl isomerase (PPIase) that catalyzes cis-trans prolyl isomerization in proteins containing pSer/Thr-Pro motifs. It has an N-terminal WW domain that targets these motifs and a C-terminal PPIase domain that catalyzes isomerization. Recently, Pin1 was shown to modify the conformation of phosphorylated histone H1 and stabilize the chromatin-H1 interaction by increasing its residence time. This Pin1-histone H1 interaction plays a key role in pathogen response, in infection, and in cell cycle control; therefore, anti-Pin1 therapeutics are an important focus for treating infections as well as cancer. Each of the H1 histones (H1.0-H1.5) contains several potential Pin1 recognition pSer/pThr-Pro motifs. To understand the Pin1-histone H1 interaction fully, we investigated how both the isolated WW domain and full-length Pin1 interact with three H1 histone substrate peptide sequences that were previously identified as important binding partners (H1.1, H1.4, and H1.5). NMR spectroscopy was used to measure the binding affinities and the interdomain dynamics upon binding to these sequences. We observed different KD values depending on the histone binding site, suggesting that energetics play a role in guiding the Pin1-histone interaction. While interdomain interactions vary between the peptides, we find no evidence for allosteric activation for the histone H1 substrates.
Collapse
Affiliation(s)
- Dinusha Jinasena
- Department of Chemistry , Mississippi State University , Mississippi State , Mississippi 39762 , United States
| | - Robert Simmons
- Department of Chemistry , Mississippi State University , Mississippi State , Mississippi 39762 , United States
| | - Hawa Gyamfi
- Department of Chemistry , University of Waterloo , Waterloo , Ontario , Ontario N2l 3G1 , Canada
| | - Nicholas C Fitzkee
- Department of Chemistry , Mississippi State University , Mississippi State , Mississippi 39762 , United States
| |
Collapse
|
11
|
Lee YM, Liou YC. Gears-In-Motion: The Interplay of WW and PPIase Domains in Pin1. Front Oncol 2018; 8:469. [PMID: 30460195 PMCID: PMC6232885 DOI: 10.3389/fonc.2018.00469] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/04/2018] [Indexed: 01/22/2023] Open
Abstract
Pin1 belongs to the family of the peptidyl-prolyl cis-trans isomerase (PPIase), which is a class of enzymes that catalyze the cis/trans isomerization of the Proline residue. Pin1 is unique and only catalyzes the phosphorylated Serine/Threonine-Proline (S/T-P) motifs of a subset of proteins. Since the discovery of Pin1 as a key protein in cell cycle regulation, it has been implicated in numerous diseases, ranging from cancer to neurodegenerative diseases. The main features of Pin1 lies in its two main domains: the WW (two conserved tryptophan) domain and the PPIase domain. Despite extensive studies trying to understand the mechanisms of Pin1 functions, how these two domains contribute to the biological roles of Pin1 in cellular signaling requires more investigations. The WW domain of Pin1 is known to have a higher affinity to its substrate than that of the PPIase domain. Yet, the WW domain seems to prefer the trans configuration of phosphorylated S/T-P motif, while the PPIase catalyzes the cis to trans isomerasion. Such contradicting information has generated much confusion as to the actual mechanism of Pin1 function. In addition, dynamic allostery has been suggested to be important for Pin1 function. Henceforth, in this review, we will be looking at the progress made in understanding the function of Pin1, and how these understandings can aid us in overcoming the diseases implicated by Pin1 such as cancer during drug development.
Collapse
Affiliation(s)
- Yew Mun Lee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Yao XQ, Momin M, Hamelberg D. Elucidating Allosteric Communications in Proteins with Difference Contact Network Analysis. J Chem Inf Model 2018; 58:1325-1330. [DOI: 10.1021/acs.jcim.8b00250] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xin-Qiu Yao
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Mohamed Momin
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| |
Collapse
|