1
|
Karakus K, Ginzburg VV, Promislow K, Rakesh L. Modeling the structure and relaxation in glycerol-silica nanocomposites. SOFT MATTER 2025; 21:376-388. [PMID: 39584194 DOI: 10.1039/d4sm00846d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The relationship between the dynamics and structure of amorphous thin films and nanocomposites near their glass transition is an important problem in soft-matter physics. Here, we develop a simple theoretical approach to describe the density profile and the α-relaxation time of a glycerol-silica nanocomposite (S. Cheng et al., J. Chem. Phys., 2015, 143, 194704). We begin by applying the Derjaguin approximation, where we replace the curved surface of the particle with the planar one; thus, modeling the nanocomposite is reduced to that of a confined thin film. Subsequently, by employing the molecular dynamics (MD) simulation data of Cheng et al., we approximate the density profile of a supported liquid thin film as a stationary solution of a fourth-order partial differential equation (PDE). We then construct an appropriate density functional, from which the density profile emerges through the minimization of free energy. Our final assumption is that of a consistent, temperature-independent scaled density profile, ensuring that the free volume throughout the entire nanocomposite increases with temperature in a smooth, monotonic fashion. Considering the established relationship between glycerol relaxation time and temperature, we can employ Doolittle-type analysis ("naïve" free-volume model), to calculate the relaxation time based on temperature and film thickness. We then convert the film thickness into the interparticle distance and subsequently the filler volume fraction for the nanocomposites and compare our model predictions with experimental data, resulting in a good agreement. The proposed approach can be easily extended to other nanocomposite and film systems.
Collapse
Affiliation(s)
- Koksal Karakus
- Department of Mathematics, Center for Applied Mathematics and Polymer Fluid Dynamics, Central Michigan University, Mt. Pleasant, Michigan 48859, USA.
- Doctoral Program in Mathematical Sciences, Central Michigan University, Mt. Pleasant, Michigan 48859, USA
| | - Valeriy V Ginzburg
- Chemical Engineering and Materials Science Department, Michigan State University, East Lansing, Michigan 48824, USA
| | - Keith Promislow
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, USA
| | - Leela Rakesh
- Department of Mathematics, Center for Applied Mathematics and Polymer Fluid Dynamics, Central Michigan University, Mt. Pleasant, Michigan 48859, USA.
- Doctoral Program in Mathematical Sciences, Central Michigan University, Mt. Pleasant, Michigan 48859, USA
| |
Collapse
|
2
|
Cuong TD, Phan AD. Relaxation time of amorphous telmisartan: Bridging the gap between experiment and theory. Phys Rev E 2025; 111:015428. [PMID: 39972739 DOI: 10.1103/physreve.111.015428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/07/2025] [Indexed: 02/21/2025]
Abstract
Telmisartan is a crucial angiotensin receptor blocker in treating high blood pressure. However, there is a wide gap between experimental measurements and theoretical calculations for telmisartan in the amorphous form. Herein, we present how to overcome this challenge via the elastically collective nonlinear Langevin equation theory. First, we utilize a hard-sphere fluid model to rapidly analyze local and nonlocal effects on the molecular dynamics of telmisartan. A nonuniversal coupling parameter is introduced to capture physicochemical complexity via dynamic fragility. Then, a chemical mapping is created to evaluate the impact of temperature on the relaxation of telmisartan. The difference between supercooled and glassy states is encoded in thermal expansion coefficients. The above strategy allows us to determine the primary relaxation time over 30 decades and its secondary counterpart over 12 decades. From there, we can satisfactorily explain previous broadband-dielectric-spectroscopy observations without fitting procedures. Our results promise to enhance the applicability of amorphous telmisartan to health protection and promotion.
Collapse
Affiliation(s)
- Tran Dinh Cuong
- Phenikaa University, Phenikaa Institute for Advanced Study, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam
| | - Anh D Phan
- Phenikaa University, Phenikaa University, Faculty of Materials Science and Engineering, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam and Phenikaa Institute for Advanced Study, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam
| |
Collapse
|
3
|
Phan AD, Schweizer KS. Effect of the nature of the solid substrate on spatially heterogeneous activated dynamics in glass forming supported films. J Chem Phys 2024; 160:074902. [PMID: 38364012 DOI: 10.1063/5.0188016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/10/2024] [Indexed: 02/18/2024] Open
Abstract
We extend the force-level elastically collective nonlinear Langevin equation theory to treat the spatial gradients of the alpha relaxation time and glass transition temperature, and the corresponding film-averaged quantities, to the geometrically asymmetric case of finite thickness supported films with variable fluid-substrate coupling. The latter typically nonuniversally slows down motion near the solid-liquid interface as modeled via modification of the surface dynamic free energy caging constraints that are spatially transferred into the film and which compete with the accelerated relaxation gradient induced by the vapor interface. Quantitative applications to the foundational hard sphere fluid and a polymer melt are presented. The strength of the effective fluid-substrate coupling has very large consequences for the dynamical gradients and film-averaged quantities in a film thickness and thermodynamic state dependent manner. The interference of the dynamical gradients of opposite nature emanating from the vapor and solid interfaces is determined, including the conditions for the disappearance of a bulk-like region in the film center. The relative importance of surface-induced modification of local caging vs the generic truncation of the long range collective elastic component of the activation barrier is studied. The conditions for the accuracy and failure of a simple superposition approximation for dynamical gradients in thin films are also determined. The emergence of near substrate dead layers, large gradient effects on film-averaged response functions, and a weak non-monotonic evolution of dynamic gradients in thick and cold films are briefly discussed. The connection of our theoretical results to simulations and experiments is briefly discussed, as is the extension to treat more complex glass-forming systems under nanoconfinement.
Collapse
Affiliation(s)
- Anh D Phan
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Vietnam
- Phenikaa Institute for Advanced Study, Phenikaa University, Hanoi 12116, Vietnam
| | - Kenneth S Schweizer
- Departments of Materials Science, Chemistry, Chemical and Biomolecular Engineering and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
4
|
Dyre JC. Solid-that-Flows Picture of Glass-Forming Liquids. J Phys Chem Lett 2024; 15:1603-1617. [PMID: 38306474 PMCID: PMC10875679 DOI: 10.1021/acs.jpclett.3c03308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/04/2024]
Abstract
This perspective article reviews arguments that glass-forming liquids are different from those of standard liquid-state theory, which typically have a viscosity in the mPa·s range and relaxation times on the order of picoseconds. These numbers grow dramatically and become 1012 - 1015 times larger for liquids cooled toward the glass transition. This translates into a qualitative difference, and below the "solidity length" which is roughly one micron at the glass transition, a glass-forming liquid behaves much like a solid. Recent numerical evidence for the solidity of ultraviscous liquids is reviewed, and experimental consequences are discussed in relation to dynamic heterogeneity, frequency-dependent linear-response functions, and the temperature dependence of the average relaxation time.
Collapse
Affiliation(s)
- Jeppe C Dyre
- "Glass and Time", IMFUFA, Dept. of Sciences, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
5
|
Ginzburg VV, Zaccone A, Casalini R. Combined description of pressure-volume-temperature and dielectric relaxation of several polymeric and low-molecular-weight organic glass-formers using SL-TS2 approach. SOFT MATTER 2022; 18:8456-8466. [PMID: 36314736 DOI: 10.1039/d2sm01049f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We apply our recently-developed mean-field "SL-TS2" (two-state Sanchez-Lacombe) model to simultaneously describe dielectric α-relaxation time, τα, and pressure-volume-temperature (PVT) data in four polymers (polystyrene, poly(methylmethacrylate), poly(vinyl acetate) and poly(cyclohexane methyl acrylate)) and four organic molecular glass formers (ortho-terphenyl, glycerol, PCB-62, and PDE). Previously, it has been shown that for all eight materials, the Casalini-Roland thermodynamical scaling, τα = f(Tvγsp) (where T is temperature and vsp is specific volume) is satisfied (R. Casalini and C. M. Roland, Phys. Rev. E, 2004, 69(6), 62501). It has also been previously shown that the same scaling emerges naturally (for sufficiently low pressures) within the "SL-TS2" framework (V. V. Ginzburg, Soft Matter, 2021, 17, 9094-9106). Here, we fit the ambient pressure curves for the relaxation time and the specific volume as functions of temperature for the eight materials and observe a good agreement between theory and experiment. We then use the Casalini-Roland scaling to convert those results into "master curves", thus enabling predictions of relaxation times and specific volumes at elevated pressures. The proposed approach can be used to describe other glass-forming materials, both low-molecular-weight and polymeric.
Collapse
Affiliation(s)
- Valeriy V Ginzburg
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA.
| | - Alessio Zaccone
- Department of Physics, University of Milan, via Celoria 16, 20133 Milano, Italy
| | - Riccardo Casalini
- Chemistry Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, USA
| |
Collapse
|
6
|
Miccio LA, Borredon C, Casado U, Phan AD, Schwartz GA. Approaching Polymer Dynamics Combining Artificial Neural Networks and Elastically Collective Nonlinear Langevin Equation. Polymers (Basel) 2022; 14:polym14081573. [PMID: 35458323 PMCID: PMC9027377 DOI: 10.3390/polym14081573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
The analysis of structural relaxation dynamics of polymers gives an insight into their mechanical properties, whose characterization is used to qualify a given material for its practical scope. The dynamics are usually expressed in terms of the temperature dependence of the relaxation time, which is only available through time-consuming experimental processes following polymer synthesis. However, it would be advantageous to estimate their dynamics before synthesizing them when designing new materials. In this work, we propose a combined approach of artificial neural networks and the elastically collective nonlinear Langevin equation (ECNLE) to estimate the temperature dependence of the main structural relaxation time of polymers based only on the knowledge of the chemical structure of the corresponding monomer.
Collapse
Affiliation(s)
- Luis A. Miccio
- Centro de Física de Materiales (CSIC-UPV/EHU)—Materials Physics Center (MPC), P. M. de Lardizabal 5, 20018 San Sebastian, Spain;
- Donostia International Physics Center, P. M. de Lardizábal 4, 20018 San Sebastian, Spain
- Institute of Materials Science and Technology (INTEMA), National Research Council (CONICET), Colon 10850, Mar del Plata 7600, Argentina;
- Correspondence: (L.A.M.); (G.A.S.)
| | - Claudia Borredon
- Centro de Física de Materiales (CSIC-UPV/EHU)—Materials Physics Center (MPC), P. M. de Lardizabal 5, 20018 San Sebastian, Spain;
| | - Ulises Casado
- Institute of Materials Science and Technology (INTEMA), National Research Council (CONICET), Colon 10850, Mar del Plata 7600, Argentina;
| | - Anh D. Phan
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Vietnam;
- Phenikaa Institute for Advanced Study (PIAS), Phenikaa University, Hanoi 12116, Vietnam
| | - Gustavo A. Schwartz
- Centro de Física de Materiales (CSIC-UPV/EHU)—Materials Physics Center (MPC), P. M. de Lardizabal 5, 20018 San Sebastian, Spain;
- Donostia International Physics Center, P. M. de Lardizábal 4, 20018 San Sebastian, Spain
- Correspondence: (L.A.M.); (G.A.S.)
| |
Collapse
|
7
|
Phan AD. Confinement Effects on the Spatially Inhomogeneous Dynamics in Metallic Glass Films. J Phys Chem B 2022; 126:1609-1614. [PMID: 35166111 DOI: 10.1021/acs.jpcb.1c08862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work develops the elastically collective nonlinear Langevin equation theory to investigate, for the first time, the glassy dynamics in capped metallic glass thin films. Finite-size effects on the spatial gradient of structural relaxation time and glass transition temperature (Tg) are calculated at different temperatures and vitrification criteria. Molecular dynamics is significantly slowed down near rough solid surfaces, and the dynamics at location far from the interfaces is sped up. In thick films, the mobility gradient normalized by the bulk value obeys the double-exponential form since interference effects between two surfaces are weak. Reducing the film thickness induces a strong dynamic coupling between two surfaces and flattens the relaxation gradient. The normalized gradient of the glass transition temperature is independent of vitrification time scale criterion and can be fitted by a superposition function as the films are not ultrathin. The local fragility is found to remain unchanged with location. This finding suggests that one can use Angell plots of bulk relaxation time and the Tg spatial gradient to characterize glassy dynamics in metallic glass films. Our computational results agree well with experimental data and simulation.
Collapse
Affiliation(s)
- Anh D Phan
- Faculty of Materials Science and Engineering, Computer Science, Artificial Intelligence Laboratory, Phenikaa Institute for Advanced Study, Phenikaa University, Hanoi 12116, Vietnam
| |
Collapse
|
8
|
Ginzburg VV. Modeling the Glass Transition of Free-Standing Polymer Thin Films Using the “SL-TS2” Mean-Field Approach. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Valeriy V. Ginzburg
- Department of Chemical Engineering and Materials Science, Michigan State University, 428 S. Shaw Lane, Room 2100, East Lansing, Michigan 48824-1226, United States
| |
Collapse
|
9
|
Phan AD, Ngan NK, Le NB, Thanh LTM. Toward a Better Understanding of Activation Volume and Dynamic Decoupling of Glass‐Forming Liquids under Compression. MACROMOL THEOR SIMUL 2021. [DOI: 10.1002/mats.202100035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anh D. Phan
- Faculty of Materials Science and Engineering Phenikaa University Hanoi 12116 Vietnam
- Phenikaa Institute for Advanced Study Phenikaa University Hanoi 12116 Vietnam
| | - Nguyen K. Ngan
- Faculty of Materials Science and Engineering Phenikaa University Hanoi 12116 Vietnam
| | - Nam B. Le
- School of Engineering Physics Hanoi University of Science and Technology 1 Dai Co Viet Hanoi 10000 Vietnam
| | - Le T. M. Thanh
- Faculty of Basic Science Posts and Telecommunications Institute of Technology 122 Hoang Quoc Viet Hanoi 10000 Vietnam
| |
Collapse
|
10
|
Phan AD, Zaccone A, Lam VD, Wakabayashi K. Theory of Pressure-Induced Rejuvenation and Strain Hardening in Metallic Glasses. PHYSICAL REVIEW LETTERS 2021; 126:025502. [PMID: 33512192 DOI: 10.1103/physrevlett.126.025502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
We theoretically investigate high-pressure effects on the atomic dynamics of metallic glasses. The theory predicts compression-induced rejuvenation and the resulting strain hardening that have been recently observed in metallic glasses. Structural relaxation under pressure is mainly governed by local cage dynamics. The external pressure restricts the dynamical constraints and slows down the atomic mobility. In addition, the compression induces a rejuvenated metastable state (local minimum) at a higher energy in the free-energy landscape. Thus, compressed metallic glasses can rejuvenate and the corresponding relaxation is reversible. This behavior leads to strain hardening in mechanical deformation experiments. Theoretical predictions agree well with experiments.
Collapse
Affiliation(s)
- Anh D Phan
- Faculty of Materials Science and Engineering, Computer Science, Artificial Intelligence Laboratory, Phenikaa Institute for Advanced Study, Phenikaa University, Hanoi 12116, Vietnam
- Department of Nanotechnology for Sustainable Energy, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Alessio Zaccone
- Department of Physics "A. Pontremoli", University of Milan, via Celoria 16, 20133 Milano, Italy
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, CB3 0HE Cambridge, United Kingdom
- Department of Chemical Engineering and Biotechnology, Statistical Physics Group, University of Cambridge, Philippa Fawcett Drive, CB3 0AS Cambridge, United Kingdom
| | - Vu D Lam
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Katsunori Wakabayashi
- Department of Nanotechnology for Sustainable Energy, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
11
|
Phan AD. Determination of Young's Modulus of Active Pharmaceutical Ingredients by Relaxation Dynamics at Elevated Pressures. J Phys Chem B 2020; 124:10500-10506. [PMID: 33164514 DOI: 10.1021/acs.jpcb.0c05523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new approach is theoretically proposed to study the glass transition of active pharmaceutical ingredients and a glass-forming anisotropic molecular liquid at high pressures. We describe amorphous materials as a fluid of hard spheres. Effects of nearest neighbor interactions and cooperative motions of particles on glassy dynamics are quantified through a local and collective elastic barrier calculated using the elastically collective nonlinear Langevin equation theory. Inserting two barriers into Kramer's theory gives the structural relaxation time. Then, we formulate a new mapping based on the thermal expansion process under pressure to intercorrelate particle density, temperature, and pressure. This analysis allows us to determine the pressure and temperature dependence of α relaxation. From this, we estimate the effective elastic modulus of amorphous materials and capture the effects of conformation on the relaxation process. Remarkably, our theoretical results agree well with experiments.
Collapse
Affiliation(s)
- Anh D Phan
- Faculty of Materials Science and Engineering, Computer Science, Artificial Intelligence Laboratory, Phenikaa Institute for Advanced Study, Phenikaa University, Hanoi 12116, Vietnam
| |
Collapse
|
12
|
Ghosh A, Schweizer KS. Microscopic Theory of the Effect of Caging and Physical Bonding on Segmental Relaxation in Associating Copolymer Liquids. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Phan AD, Jedrzejowska A, Paluch M, Wakabayashi K. Theoretical and Experimental Study of Compression Effects on Structural Relaxation of Glass-Forming Liquids. ACS OMEGA 2020; 5:11035-11042. [PMID: 32455224 PMCID: PMC7241026 DOI: 10.1021/acsomega.0c00860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
We develop the elastically collective nonlinear Langevin equation theory of bulk relaxation of glass-forming liquids to investigate molecular mobility under compression conditions. The applied pressure restricts more molecular motion and therefore significantly slows down the molecular dynamics when increasing the pressure. We quantitatively determine the temperature and pressure dependence of the structural relaxation time. To validate our model, dielectric spectroscopy experiments for three rigid and nonpolymeric supramolecules are carried out at ambient and elevated pressures. The numerical results quantitatively agree with experimental data.
Collapse
Affiliation(s)
- Anh D. Phan
- Faculty
of Materials Science and Engineering, Phenikaa Institute for Advanced Study, Phenikaa University, Hanoi 12116, Vietnam
- Faculty
of Computer Science, Artificial Intelligence Laboratory, Phenikaa University, Hanoi 12116, Vietnam
| | - Agnieszka Jedrzejowska
- Institute
of Physics, University of Silesia, SMCEBI, 75 Puku Piechoty 1a, 41-500 Chorzów, Poland
| | - Marian Paluch
- Institute
of Physics, University of Silesia, SMCEBI, 75 Puku Piechoty 1a, 41-500 Chorzów, Poland
| | - Katsunori Wakabayashi
- Department
of Nanotechnology for Sustainable Energy, School of Science and Technology, Kwansei Gakuin University, Sanda 669-1337, Hyogo, Japan
| |
Collapse
|
14
|
Phan AD, Wakabayashi K. Theory of Structural and Secondary Relaxation in Amorphous Drugs under Compression. Pharmaceutics 2020; 12:E177. [PMID: 32093033 PMCID: PMC7076649 DOI: 10.3390/pharmaceutics12020177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/04/2020] [Accepted: 02/15/2020] [Indexed: 11/30/2022] Open
Abstract
Compression effects on alpha and beta relaxation process of amorphous drugs are theoretically investigated by developing the elastically collective nonlinear Langevin equation theory. We describe the structural relaxation as a coupling between local and nonlocal activated process. Meanwhile, the secondary beta process is mainly governed by the nearest-neighbor interactions of a molecule. This assumption implies the beta relaxation acts as a precursor of the alpha relaxation. When external pressure is applied, a small displacement of a molecule is additionally exerted by a pressure-induced mechanical work in the dynamic free energy, which quantifies interactions between a molecule with its nearest neighbors. The local dynamics has more restriction and it induces stronger effects of collective motions on single-molecule dynamics. Thus, the alpha and beta relaxation times are significantly slowed down with increasing compression. We apply this approach to determine the temperature and pressure dependence of the alpha and beta relaxation time for curcumin, glibenclamide, and indomethacin, and compare numerical results with prior experimental studies. Both qualitative and quantitative agreement between theoretical calculations and experiments validate our assumptions and reveal their limitations. Our approach would pave the way for the development of the drug formulation process.
Collapse
Affiliation(s)
- Anh D. Phan
- Faculty of Materials Science and Engineering, Phenikaa Institute for Advanced Study, Phenikaa University, Hanoi 12116, Vietnam
- Faculty of Information Technology, Artificial Intelligence Laboratory, Phenikaa University, Hanoi 12116, Vietnam
- Department of Nanotechnology for Sustainable Energy, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan;
| | - Katsunori Wakabayashi
- Department of Nanotechnology for Sustainable Energy, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan;
| |
Collapse
|
15
|
Abstract
The stochastic dynamical behaviors of an elementary reaction system can be investigated by the chemical Langevin equation (CLE). However, most of the reactions in engineering belong to complex reactions. It is not appropriate to describe the random evolution process of a complex chemical reaction system by directly using CLE because the foundation of the deviation of CLE is the equilibrium equation of the number of molecules in elementary reaction systems. In the study, the chemical Langevin equation for complex reactions (CLE-CR) is proposed based on the random process theory by introducing the extent of reactions to express the reaction rates of complex reactions. The reaction rates of complex reactions are regarded as some random variables following Poisson distribution. To illustrate the essential consistency of CLE-CR and CLE, the physical meaning of the propensity function in CLE is comprehensively discussed. A numerical example from chemical engineering is employed to demonstrate the effectiveness of CLE-CR and the solving procedure. The results show that CLE-CR can be conveniently applied into engineering to investigate the stochastic dynamical behaviors of complex reaction systems, giving the probabilistic information of the concentration evolution of chemical constituents.
Collapse
Affiliation(s)
- Tao Li
- School of Environment and Architecture , University of Shanghai for Science and Technology , Shanghai 200093 , China
| |
Collapse
|
16
|
Ginzburg VV. A simple mean-field model of glassy dynamics and glass transition. SOFT MATTER 2020; 16:810-825. [PMID: 31840706 DOI: 10.1039/c9sm01575b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We propose a phenomenological model to describe the equilibrium dynamic behavior of amorphous glassy materials. It is assumed that a material can be represented by a lattice of cooperatively re-arranging regions (CRRs), with each CRR having two states, the low-temperature "solid" and the high-temperature "liquid". At low temperatures, the material exhibits two characteristic relaxation times, corresponding to the slow large-scale motion between the "solid" CRRs (α-relaxation) and the faster local motion within individual CRRs (β-relaxation). At high temperatures, the α- and β-relaxation times merge, as observed experimentally and suggested by the "Coupling Model" framework. Our new approach is labeled "Two-state, two (time)scale model" or TS2. It is shown that the TS2 treatment can successfully describe the "two-Arrhenius" relaxation time behavior described in several recent experiments. We also apply TS2 to describe the pressure- and molecular-weight dependence of the glass transition temperature in bulk polymers, as well as its dependence on film thickness in thin films.
Collapse
Affiliation(s)
- Valeriy V Ginzburg
- Core Research and Development, The Dow Chemical Company, Midland, MI 48674, USA.
| |
Collapse
|
17
|
Hung JH, Simmons DS. Do String-like Cooperative Motions Predict Relaxation Times in Glass-Forming Liquids? J Phys Chem B 2020; 124:266-276. [PMID: 31886663 DOI: 10.1021/acs.jpcb.9b09468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Adam-Gibbs theory of glass formation posits that the growth in the activation barrier of fragile liquids on cooling emerges from a loss of configurational entropy and concomitant growth in "cooperatively rearranging regions" (CRRs). A body of literature over 2 decades has suggested that "string-like" cooperatively rearranging clusters observed in molecular simulations may be these CRRs-a scenario that would have profound implications for the understanding of the glass transition. The central element of this postulate is the report of an apparent zero-parameter relationship between the mass of string-like CRRs and the relaxation time. Here, we show, based on molecular dynamics simulations of multiple glass-forming liquids, that this finding is the result of an implicit adjustable parameter-a "replacement distance". This parameter is equivalent to an adjustable exponent within a generalized Adam-Gibbs relation, such that it tunes the entire functional form of the relation. Moreover, we are unable to find any objective criterion, based on the radial distribution function or the cluster fractal dimension, for selecting this replacement distance across multiple systems. We conclude that the present data do not establish that string-like cooperative rearrangements, as presently defined, are predictive of segmental relaxation via an Adam-Gibbs-like physical model.
Collapse
Affiliation(s)
- Jui-Hsiang Hung
- Department of Polymer Engineering , The University of Akron , Akron , Ohio 44325 , United States
| | - David S Simmons
- Department of Chemical and Biomedical Engineering , University of South Florida , Tampa , Florida 33620 , United States
| |
Collapse
|
18
|
Phan AD, Koperwas K, Paluch M, Wakabayashi K. Coupling between structural relaxation and diffusion in glass-forming liquids under pressure variation. Phys Chem Chem Phys 2020; 22:24365-24371. [DOI: 10.1039/d0cp02761h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We theoretically investigate structural relaxation and activated diffusion of glass-forming liquids at different pressures using both Elastically Collective Nonlinear Langevin Equation (ECNLE) theory and molecular dynamics (MD) simulations.
Collapse
Affiliation(s)
- Anh D. Phan
- Faculty of Materials Science and Engineering
- Phenikaa Institute for Advanced Study
- Phenikaa University
- Hanoi 12116
- Vietnam
| | - Kajetan Koperwas
- University of Silesia in Katowice
- Institute of Physics
- Chorzow
- Poland
- Silesian Center for Education and Interdisciplinary Research SMCEBI
| | - Marian Paluch
- University of Silesia in Katowice
- Institute of Physics
- Chorzow
- Poland
- Silesian Center for Education and Interdisciplinary Research SMCEBI
| | - Katsunori Wakabayashi
- Department of Nanotechnology for Sustainable Energy
- School of Science and Technology
- Kwansei Gakuin University
- Sanda
- Japan
| |
Collapse
|
19
|
Phan AD, Schweizer KS. Influence of Longer Range Transfer of Vapor Interface Modified Caging Constraints on the Spatially Heterogeneous Dynamics of Glass-Forming Liquids. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00754] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Phan AD, Knapik-Kowalczuk J, Paluch M, Hoang TX, Wakabayashi K. Theoretical Model for the Structural Relaxation Time in Coamorphous Drugs. Mol Pharm 2019; 16:2992-2998. [PMID: 31095393 DOI: 10.1021/acs.molpharmaceut.9b00230] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We propose a simple approach to investigate the structural relaxation time and glass transition of amorphous drugs. Amorphous materials are modeled as a set of equal sized hard spheres. The structural relaxation time over many decades in hard-sphere fluids is theoretically calculated using the elastically collective nonlinear Langevin equation theory associated with Kramer's theory. Then, new thermal mapping from a real material to an effective hard-sphere fluid provides temperature-dependent relaxation time, which can be compared to experiments. Numerical results quantitatively agree with previous experiments for pharmaceutical binary mixtures having different weight ratios. We carry out experiments to test our calculations for an ezetimibe-simvastatin-Kollidon VA64 mixture. Our approach would provide a simple but comprehensive description of glassy dynamics in amorphous composites.
Collapse
Affiliation(s)
| | - Justyna Knapik-Kowalczuk
- Institute of Physics , University of Silesia, SMCEBI , 75 Pułku Piechoty 1a , 41-500 Chorzów , Poland
| | - Marian Paluch
- Institute of Physics , University of Silesia, SMCEBI , 75 Pułku Piechoty 1a , 41-500 Chorzów , Poland
| | - Trinh X Hoang
- Institute of Physics , Vietnam Academy of Science and Technology , 10 Dao Tan, Ba Dinh , Hanoi 100000 , Vietnam
| | - Katsunori Wakabayashi
- Department of Nanotechnology for Sustainable Energy, School of Science and Technology , Kwansei Gakuin University , Sanda , Hyogo 669-1337 , Japan
| |
Collapse
|
21
|
Hung JH, Patra TK, Meenakshisundaram V, Mangalara JH, Simmons DS. Universal localization transition accompanying glass formation: insights from efficient molecular dynamics simulations of diverse supercooled liquids. SOFT MATTER 2019; 15:1223-1242. [PMID: 30556082 DOI: 10.1039/c8sm02051e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The origin of the precipitous dynamic arrest known as the glass transition is a grand open question of soft condensed matter physics. It has long been suspected that this transition is driven by an onset of particle localization and associated emergence of a glassy modulus. However, progress towards an accepted understanding of glass formation has been impeded by an inability to obtain data sufficient in chemical diversity, relaxation timescales, and spatial and temporal resolution to validate or falsify proposed theories for its physics. Here we first describe a strategy enabling facile high-throughput simulation of glass-forming liquids to nearly unprecedented relaxation times. We then perform simulations of 51 glass-forming liquids, spanning polymers, small organic molecules, inorganics, and metallic glass-formers, with longest relaxation times exceeding one microsecond. Results identify a universal particle-localization transition accompanying glass formation across all classes of glass-forming liquid. The onset temperature of non-Arrhenius dynamics is found to serve as a normalizing condition leading to a master collapse of localization data. This transition exhibits a non-universal relationship with dynamic arrest, suggesting that the nonuniversality of supercooled liquid dynamics enters via the dependence of relaxation times on local cage scale. These results suggest that a universal particle-localization transition may underpin the glass transition, and they emphasize the potential for recent theoretical developments connecting relaxation to localization and emergent elasticity to finally explain the origin of this phenomenon. More broadly, the capacity for high-throughput prediction of glass formation behavior may open the door to computational inverse design of glass-forming materials.
Collapse
Affiliation(s)
- Jui-Hsiang Hung
- Department of Polymer of Engineering, University of Akron, 250 South Forge St., Akron, OH 44325, USA
| | | | | | | | | |
Collapse
|
22
|
Phan AD, Wakabayashi K, Paluch M, Lam VD. Effects of cooling rate on structural relaxation in amorphous drugs: elastically collective nonlinear langevin equation theory and machine learning study. RSC Adv 2019; 9:40214-40221. [PMID: 35542647 PMCID: PMC9076194 DOI: 10.1039/c9ra08441j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022] Open
Abstract
Theoretical approaches are formulated to investigate the molecular mobility under various cooling rates of amorphous drugs. We describe the structural relaxation of a tagged molecule as a coupled process of cage-scale dynamics and collective molecular rearrangement beyond the first coordination shell. The coupling between local and non-local dynamics behaves distinctly in different substances. Theoretical calculations for the structural relaxation time, glass transition temperature, and dynamic fragility are carried out over twenty-two amorphous drugs and polymers. Numerical results have a quantitatively good accordance with experimental data and the extracted physical quantities using the Vogel–Fulcher–Tammann fit function and machine learning. The machine learning method reveals the linear relation between the glass transition temperature and the melting point, which is a key factor for pharmaceutical solubility. Our predictive approaches are reliable tools for developing drug formulations. Theoretical approaches are formulated to investigate the molecular mobility under various cooling rates of amorphous drugs.![]()
Collapse
Affiliation(s)
- Anh D. Phan
- Faculty of Materials Science and Engineering
- Phenikaa Institute for Advanced Study
- Phenikaa University
- Hanoi 12116
- Vietnam
| | - Katsunori Wakabayashi
- Department of Nanotechnology for Sustainable Energy
- School of Science and Technology
- Kwansei Gakuin University
- Sanda
- Japan
| | - Marian Paluch
- Institute of Physics
- University of Silesia
- SMCEBI
- 41-500 Chorzow
- Poland
| | - Vu D. Lam
- Institute of Materials Science
- Vietnam Academy of Science and Technology
- Hanoi
- Vietnam
- Graduate University of Science and Technology
| |
Collapse
|
23
|
Phan AD, Schweizer KS. Dynamic Gradients, Mobile Layers, Tg Shifts, Role of Vitrification Criterion, and Inhomogeneous Decoupling in Free-Standing Polymer Films. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01094] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|