1
|
Gavutis M, Paracini N, Lakey J, Valiokas R, Clifton LA. Interfacial structure and protein incorporation in sparsely tethered phospholipid membranes. J Colloid Interface Sci 2025; 686:163-174. [PMID: 39892008 DOI: 10.1016/j.jcis.2025.01.224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
Tethered bilayer lipid membranes (tBLMs) are a robust model system for studying the biophysics of cell membranes, including protein-lipid interactions and membrane dynamics. In this study we describe the structural properties of a novel tBLM platform based on self-assembled monolayers (SAMs) on gold presenting sparsely distributed linear tethers. The interfacial architecture of tBLMs built on two types of alkane tether arrangements, homogeneously distributed short tethers and nanoclustered long tethers, were resolved using neutron reflectometry (NR). A series of tBLM systems was prepared and structurally characterized, with variations in membrane phase (gel and fluid lipids), substrate attachment type (floating and tethered), and electrostatic properties (zwitterionic and negatively charged lipids). Furthermore, the versatility of the tBLM platform was demonstrated by incorporating transmembrane proteins, specifically the outer membrane protein F (OmpF), into the tethered bilayer. Quantitative analyses using NR and quartz crystal microbalance with dissipation monitoring (QCM-D) confirmed successful protein incorporation, with an estimated OmpF volume fraction ∼ 18 % within the tBLM. The tBLMs exhibited excellent stability and maintained structural integrity under continuous flow conditions during up to 16-hour NR experiments. Our results highlight the adaptability of this sparse tethering system for creating physiologically relevant membrane models, facilitating precise investigations of membrane-associated processes and protein interactions. The study establishes the potential of this platform for advancing biophysical research on cell membranes and membrane proteins, as well as developing biomimetic systems for analytical and screening applications.
Collapse
Affiliation(s)
- Martynas Gavutis
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania.
| | - Nicolò Paracini
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Jeremy Lakey
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Ramūnas Valiokas
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
| | - Luke A Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 OQX, UK.
| |
Collapse
|
2
|
Roy B, Guha P, Chang CH, Nahak P, Karmakar G, Bykov AG, Akentiev AV, Noskov BA, Patra A, Dutta K, Ghosh C, Panda AK. Effect of cationic dendrimer on membrane mimetic systems in the form of monolayer and bilayer. Chem Phys Lipids 2024; 258:105364. [PMID: 38040405 DOI: 10.1016/j.chemphyslip.2023.105364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/01/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Interactions between a zwitterionic phospholipid, 1, 2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and four anionic phospholipids dihexadecyl phosphate (DHP), 1, 2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG), 1, 2-dipalmitoyl-sn-glycero-3-phosphate (DPP) and 1, 2-dipalmitoyl-sn-glycero-3-phospho ethanol (DPPEth) in combination with an additional amount of 30 mol% cholesterol were separately investigated at air-buffer interface through surface pressure (π) - area (A) measurements. π-A isotherm derived parameters revealed maximum negative deviation from ideality for the mixtures comprising 30 mol% anionic lipids. Besides the film functionality, structural changes of the monomolecular films at different surface pressures in the absence and presence of polyamidoamine (PAMAM, generation 4), a cationic dendrimer, were visualised through Brewster angle microscopy and fluorescence microscopic studies. Fluidity/rigidity of monolayers were assessed by surface dilatational rheology studies. Effect of PAMAM on the formation of adsorbed monolayer, due to bilayer disintegration of liposomes (DPPC:anionic lipids= 7:3 M/M, and 30 mol% cholesterol) were monitored by surface pressure (π) - time (t) isotherms. Bilayer disintegration kinetics were dependent on lipid head group and chain length, besides dendrimer concentration. Such studies are considered to be an in vitro cell membrane model where the alteration of molecular orientation play important roles in understanding the nature of interaction between the dendrimer and cell membrane. Liposome-dendrimer aggregates were nontoxic to breast cancer cell line as well as in doxorubicin treated MDA-MB-468 cell line suggesting their potential as drug delivery systems.
Collapse
Affiliation(s)
- Biplab Roy
- Department of Chemistry, University of North Bengal, Darjeeling 734 013, West Bengal, India; Chemistry of Interfaces Group, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Pritam Guha
- Department of Chemistry, University of North Bengal, Darjeeling 734 013, West Bengal, India; Department for Biomaterials Research, Polymer Institute, Slovak Academy of Sciences, 845 41 Bratislava, Slovakia
| | - Chien-Hsiang Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Prasant Nahak
- Department of Chemistry, University of North Bengal, Darjeeling 734 013, West Bengal, India
| | - Gourab Karmakar
- Department of Chemistry, University of North Bengal, Darjeeling 734 013, West Bengal, India
| | - Alexey G Bykov
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. 26, 198504 St. Petersburg, Russia
| | - Alexander V Akentiev
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. 26, 198504 St. Petersburg, Russia
| | - Boris A Noskov
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. 26, 198504 St. Petersburg, Russia
| | - Anuttam Patra
- Chemistry of Interfaces Group, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Kunal Dutta
- Department of Human Physiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Chandradipa Ghosh
- Department of Human Physiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Amiya Kumar Panda
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India.
| |
Collapse
|
3
|
Gavutis M, Schulze-Niemand E, Lee HH, Liedberg B, Stein M, Valiokas R. Bilayer lipid membrane formation on surface assemblies with sparsely distributed tethers. NANOSCALE 2023. [PMID: 37128711 DOI: 10.1039/d2nr07069c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A combined computational and experimental study of small unilamellar vesicle (SUV) fusion on mixed self-assembled monolayers (SAMs) terminated with different deuterated tether moieties (-(CD2)7CD3 or -(CD2)15CD3) is reported. Tethered bilayer lipid membrane (tBLM) formation of synthetic 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine was initially probed on SAMs with controlled tether (d-alkyl tail) surface densities and lateral molecular packing using quartz crystal microbalance with dissipation monitoring (QCM-D). Long time-scale coarse-grained molecular dynamics (MD) simulations were then employed to elucidate the mechanisms behind the interaction between the SUVs and the different phases formed by the -(CD2)7CD3 and -(CD2)15CD3 tethers. Furthermore, a series of real time kinetics was recorded under different osmotic conditions using QCM-D to determine the accumulated lipid mass and for probing the fusion process. It is shown that the key factors driving the SUV fusion and tBLM formation on this type of surfaces involve tether insertion into the SUVs along with vesicle deformation. It is also evident that surface densities of the tethers as small as a few mol% are sufficient to obtain stable tBLMs with a high reproducibility. The described "sparsely tethered" tBLM system can be advantageous in studying different biophysical phenomena, such as membrane protein insertion, effects of receptor clustering, and raft formation.
Collapse
Affiliation(s)
- Martynas Gavutis
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, 02300 Vilnius, Lithuania.
| | - Eric Schulze-Niemand
- Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical System, Magdeburg, Germany
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Hung-Hsun Lee
- Division of Molecular Physics, Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
| | - Bo Liedberg
- Division of Molecular Physics, Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
| | - Matthias Stein
- Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical System, Magdeburg, Germany
| | - Ramūnas Valiokas
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, 02300 Vilnius, Lithuania.
| |
Collapse
|
4
|
Pudžaitis V, Talaikis M, Sadzevičienė R, Labanauskas L, Niaura G. Electrochemical SEIRAS Analysis of Imidazole-Ring-Functionalized Self-Assembled Monolayers. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7221. [PMID: 36295289 PMCID: PMC9610120 DOI: 10.3390/ma15207221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
An essential amino acid, histidine, has a vital role in the secondary structure and catalytic activity of proteins because of the diverse interactions its side chain imidazole (Im) ring can take part in. Among these interactions, hydrogen donating and accepting bonding are often found to operate at the charged interfaces. However, despite the great biological significance, hydrogen-bond interactions are difficult to investigate at electrochemical interfaces due to the lack of appropriate experimental methods. Here, we present a surface-enhanced infrared absorption spectroscopy (SEIRAS) and density functional theory (DFT) study addressing this issue. To probe the hydrogen-bond interactions of the Im at the electrified organic layer/water interface, we constructed Au-adsorbed self-assembled monolayers (SAMs) that are functionalized with the Im group. As the prerequisite for spectroelectrochemical investigations, we first analyzed the formation of the monolayer and the relationship between the chemical composition of SAM and its structure. Infrared absorption markers that are sensitive to hydrogen-bonding interactions were identified. We found that negative electrode polarization effectively reduced hydrogen-bonding strength at the Im ring at the organic layer-water interface. The possible mechanism governing such a decrease in hydrogen-bonding interaction strength is discussed.
Collapse
Affiliation(s)
- Vaidas Pudžaitis
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Martynas Talaikis
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Rita Sadzevičienė
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Linas Labanauskas
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Gediminas Niaura
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
5
|
The Impact of an Anchoring Layer on the Formation of Tethered Bilayer Lipid Membranes on Silver Substrates. Molecules 2021; 26:molecules26226878. [PMID: 34833969 PMCID: PMC8624891 DOI: 10.3390/molecules26226878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/05/2022] Open
Abstract
Tethered bilayer lipid membranes (tBLMs) have been known as stable and versatile experimental platforms for protein–membrane interaction studies. In this work, the assembly of functional tBLMs on silver substrates and the effect of the molecular chain-length of backfiller molecules on their properties were investigated. The following backfillers 3-mercapto-1-propanol (3M1P), 4-mercapto-1-butanol (4M1B), 6-mercapto-1-hexanol (6M1H), and 9-mercapto-1-nonanol (9M1N) mixed with the molecular anchor WC14 (20-tetradecyloxy-3,6,9,12,15,18,22 heptaoxahexatricontane-1-thiol) were used to form self-assembled monolayers (SAMs) on silver, which influenced a fusion of multilamellar vesicles and the formation of tBLMs. Spectroscopic analysis by SERS and RAIRS has shown that by using different-length backfiller molecules, it is possible to control WC14 anchor molecules orientation on the surface. An introduction of increasingly longer surface backfillers in the mixed SAM may be related to the increasing SAMs molecular order and more vertical orientation of WC14 at both the hydrophilic ethylenoxide segment and the hydrophobic lipid bilayer anchoring alkane chains. Since no clustering of WC14 alkane chains, which is deleterious for tBLM integrity, was observed on dry samples, the suitability of mixed-component SAMs for subsequent tBLM formation was further interrogated by electrochemical impedance spectroscopy (EIS). EIS showed the arrangement of well-insulating tBLMs if 3M1P was used as a backfiller. An increase in the length of the backfiller led to increased defectiveness of tBLMs. Despite variable defectiveness, all tBLMs responded to the pore-forming cholesterol-dependent cytolysin, vaginolysin in a manner consistent with the functional reconstitution of the toxin into phospholipid bilayer. This experiment demonstrates the biological relevance of tBLMs assembled on silver surfaces and indicates their utility as biosensing elements for the detection of pore-forming toxins in liquid samples.
Collapse
|
6
|
Javorskis T, Rakickas T, Jankūnaitė A, Talaikis M, Niaura G, Ulčinas A, Orentas E. Meso-scale surface patterning of self-assembled monolayers with water. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Köhler S, Fragneto G, Alcaraz JP, Nelson A, Martin DK, Maccarini M. Nanostructural Characterization of Cardiolipin-Containing Tethered Lipid Bilayers Adsorbed on Gold and Silicon Substrates for Protein Incorporation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8908-8923. [PMID: 34286589 DOI: 10.1021/acs.langmuir.1c00119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A key to the development of lipid membrane-based devices is a fundamental understanding of how the molecular structure of the lipid bilayer membrane is influenced by the type of lipids used to build the membrane. This is particularly important when membrane proteins are included in these devices since the precise lipid environment affects the ability to incorporate membrane proteins and their functionality. Here, we used neutron reflectometry to investigate the structure of tethered bilayer lipid membranes and to characterize the incorporation of the NhaA sodium proton exchanger in the bilayer. The lipid membranes were composed of two lipids, dioleoyl phosphatidylcholine and cardiolipin, and were adsorbed on gold and silicon substrates using two different tethering architectures based on functionalized oligoethylene glycol molecules of different lengths. In all of the investigated samples, the addition of cardiolipin caused distinct structural rearrangement including crowding of ethylene glycol groups of the tethering molecules in the inner head region and a thinning of the lipid tail region. The incorporation of NhaA in the tethered bilayers following two different protocols is quantified, and the way protein incorporation modulates the structural properties of these membranes is detailed.
Collapse
Affiliation(s)
- Sebastian Köhler
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC/SyNaBi, 38000 Grenoble, France
- Institut Laue-Langevin, 38042 Grenoble, France
| | | | - Jean-Pierre Alcaraz
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC/SyNaBi, 38000 Grenoble, France
| | - Andrew Nelson
- ANSTO-Sydney, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Donald K Martin
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC/SyNaBi, 38000 Grenoble, France
| | - Marco Maccarini
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC/SyNaBi, 38000 Grenoble, France
| |
Collapse
|
8
|
Towards a Long-Chain Perfluoroalkyl Replacement: Water and Oil Repellent Perfluoropolyether-Based Polyurethane Oligomers. Polymers (Basel) 2021; 13:polym13071128. [PMID: 33918135 PMCID: PMC8036271 DOI: 10.3390/polym13071128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022] Open
Abstract
Original perfluoropolyether (PFPE)-based oligomeric polyurethanes (FOPUs) with different macromolecular architecture were synthesized (in one step) as low-surface-energy materials. It is demonstrated that the oligomers, especially the ones terminated with CF3 moieties, can be employed as safer replacements to long-chain perfluoroalkyl substances/additives. The FOPU macromolecules, when added to an engineering thermoplastic (polyethylene terephthalate, PET) film, readily migrate to the film surface and bring significant water and oil repellency to the thermoplastic boundary. The best performing FOPU/PET films have reached the level of oil wettability and surface energy significantly lower than that of polytetrafluoroethylene, a fully perfluorinated polymer. Specifically, the highest level of the repellency is observed with an oligomeric additive, which was made using aromatic diisocyanate as a comonomer and has CF3 end-group. This semicrystalline oligomer has a glass transition temperature (Tg) well above room temperature, and we associate the superiority of the material in achieving low water and oil wettability with its ability to effectively retain CF3 and CF2 moieties in contact with the test wetting liquids.
Collapse
|
9
|
St Hill LR, Craft JW, Chinwangso P, Tran HV, Marquez MD, Lee TR. Antifouling Coatings Generated from Unsymmetrical Partially Fluorinated Spiroalkanedithiols. ACS APPLIED BIO MATERIALS 2021; 4:1563-1572. [PMID: 35006665 PMCID: PMC8812961 DOI: 10.1021/acsabm.0c01409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
![]()
Biofouling
negatively impacts modern society on a daily basis,
especially with regard to the important industries of medicine, oil,
and shipping. This manuscript describes the preparation and study
of model antifouling coatings generated from the adsorption of unsymmetrical
partially fluorinated spiroalkanedithiols on gold. The antifouling
properties of the self-assembled monolayers (SAMs) derived from the
spiroalkanedithiols were compared to SAMs derived from analogous monodentate
partially fluorinated and nonfluorinated alkanethiols. The antifouling
properties were evaluated using in situ surface plasmon
resonance spectroscopy (SPR), ex situ electrochemical
quartz crystal microbalance (QCM) measurements, and ex situ ellipsometric thickness measurements. The resistance to nonspecific
protein adsorption of the SAMs was evaluated with proteins having
a wide range of properties and applications including protamine, lysozyme,
bovine serum albumin, and fibrinogen. The results from the SPR and
the QCM measurements demonstrated that in most cases, the SAM coatings
derived from the partially fluorinated spiroalkanedithiols having
mixed hydrocarbon and fluorocarbon tail groups exhibited better antifouling
performance when compared to the SAMs derived from their single-component
monodentate counterparts. The studies also revealed that while the
SPR and the QCM measurements in most cases were able to distinguish
the adsorption trends for the SAMs and proteins examined, the ellipsometric
thickness measurements were markedly less discriminating. On the whole,
these studies validate the use of unsymmetrical partially fluorinated
spiroalkanedithiols for generating effective antifouling coatings
on metal substrates.
Collapse
Affiliation(s)
- Lydia R St Hill
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| | - John W Craft
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Road, Houston, Texas 77204-5001, United States
| | - Pawilai Chinwangso
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| | - Hung-Vu Tran
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| | - Maria D Marquez
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| | - T Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| |
Collapse
|
10
|
Raila T, Ambrulevičius F, Penkauskas T, Jankunec M, Meškauskas T, Vanderah DJ, Valincius G. Clusters of protein pores in phospholipid bilayer membranes can be identified and characterized by electrochemical impedance spectroscopy. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Drabik D, Gavutis M, Valiokas RN, Ulčinas AR. Determination of the Mechanical Properties of Model Lipid Bilayers Using Atomic Force Microscopy Indentation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13251-13262. [PMID: 33125251 DOI: 10.1021/acs.langmuir.0c02181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
By conducting a systematic study of model lipid membranes using the atomic force microscopy (AFM) indentation, we demonstrate the importance of an experimental protocol on the determination of their mechanical parameters. We refine the experimental approach by analyzing the influence of the contact mechanics models used to process the data, substrate preparation, and indenter geometry. We show that both bending rigidity and area compressibility can be determined from a single AFM indentation measurement.
Collapse
Affiliation(s)
- Dominik Drabik
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| | - Martynas Gavutis
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanoriu̧ 231, Vilnius LT-02300, Lithuania
| | - Ramu Nas Valiokas
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanoriu̧ 231, Vilnius LT-02300, Lithuania
| | - Artu Ras Ulčinas
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanoriu̧ 231, Vilnius LT-02300, Lithuania
| |
Collapse
|