1
|
Zielinski KA, Sui S, Pabit SA, Rivera DA, Wang T, Hu Q, Kashipathy MM, Lisova S, Schaffer CB, Mariani V, Hunter MS, Kupitz C, Moss FR, Poitevin FP, Grant TD, Pollack L. RNA structures and dynamics with Å resolution revealed by x-ray free-electron lasers. SCIENCE ADVANCES 2023; 9:eadj3509. [PMID: 37756398 PMCID: PMC10530093 DOI: 10.1126/sciadv.adj3509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
RNA macromolecules, like proteins, fold to assume shapes that are intimately connected to their broadly recognized biological functions; however, because of their high charge and dynamic nature, RNA structures are far more challenging to determine. We introduce an approach that exploits the high brilliance of x-ray free-electron laser sources to reveal the formation and ready identification of angstrom-scale features in structured and unstructured RNAs. Previously unrecognized structural signatures of RNA secondary and tertiary structures are identified through wide-angle solution scattering experiments. With millisecond time resolution, we observe an RNA fold from a dynamically varying single strand through a base-paired intermediate to assume a triple-helix conformation. While the backbone orchestrates the folding, the final structure is locked in by base stacking. This method may help to rapidly characterize and identify structural elements in nucleic acids in both equilibrium and time-resolved experiments.
Collapse
Affiliation(s)
- Kara A. Zielinski
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Shuo Sui
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Suzette A. Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Daniel A. Rivera
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Tong Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Qingyue Hu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Maithri M. Kashipathy
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Stella Lisova
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Chris B. Schaffer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Valerio Mariani
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Mark S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Christopher Kupitz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Frank R. Moss
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Frédéric P. Poitevin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Thomas D. Grant
- Department of Structural Biology, Jacobs School of Medicine and Biological Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
Zielinski KA, Sui S, Pabit SA, Rivera DA, Wang T, Hu Q, Kashipathy MM, Lisova S, Schaffer CB, Mariani V, Hunter MS, Kupitz C, Moss FR, Poitevin FP, Grant TD, Pollack L. RNA structures and dynamics with Å resolution revealed by x-ray free electron lasers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.541763. [PMID: 37292849 PMCID: PMC10245879 DOI: 10.1101/2023.05.24.541763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA macromolecules, like proteins, fold to assume shapes that are intimately connected to their broadly recognized biological functions; however, because of their high charge and dynamic nature, RNA structures are far more challenging to determine. We introduce an approach that exploits the high brilliance of x-ray free electron laser sources to reveal the formation and ready identification of Å scale features in structured and unstructured RNAs. New structural signatures of RNA secondary and tertiary structures are identified through wide angle solution scattering experiments. With millisecond time resolution, we observe an RNA fold from a dynamically varying single strand through a base paired intermediate to assume a triple helix conformation. While the backbone orchestrates the folding, the final structure is locked in by base stacking. In addition to understanding how RNA triplexes form and thereby function as dynamic signaling elements, this new method can vastly increase the rate of structure determination for these biologically essential, but mostly uncharacterized macromolecules.
Collapse
Affiliation(s)
- Kara A. Zielinski
- School of Applied and Engineering Physics, Cornell University; Ithaca NY 14853 USA
| | - Shuo Sui
- School of Applied and Engineering Physics, Cornell University; Ithaca NY 14853 USA
| | - Suzette A. Pabit
- School of Applied and Engineering Physics, Cornell University; Ithaca NY 14853 USA
| | - Daniel A. Rivera
- Meinig School of Biomedical Engineering, Cornell University; Ithaca NY 14853 USA
| | - Tong Wang
- School of Applied and Engineering Physics, Cornell University; Ithaca NY 14853 USA
| | - Qingyue Hu
- School of Applied and Engineering Physics, Cornell University; Ithaca NY 14853 USA
| | - Maithri M. Kashipathy
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Stella Lisova
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Chris B. Schaffer
- Meinig School of Biomedical Engineering, Cornell University; Ithaca NY 14853 USA
| | - Valerio Mariani
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Mark S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Christopher Kupitz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Frank R. Moss
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Frédéric P. Poitevin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Thomas D. Grant
- Department of Structural Biology, Jacobs School of Medicine and Biological Sciences; University at Buffalo, Buffalo, NY 14203 USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University; Ithaca NY 14853 USA
| |
Collapse
|
3
|
Makhatadze GI, Chen CR, Khutsishvili I, Marky LA. The volume changes of unfolding of dsDNA. Biophys J 2022; 121:4892-4899. [PMID: 35962547 PMCID: PMC9811605 DOI: 10.1016/j.bpj.2022.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 01/07/2023] Open
Abstract
High hydrostatic pressure can have profound effects on the stability of biomacromolecules. The magnitude and direction (stabilizing or destabilizing) of this effect is defined by the volume changes in the system, ΔV. Positive volume changes will stabilize the starting native state, whereas negative volume changes will lead to the stabilization of the final unfolded state. For the DNA double helix, experimental data suggested that when the thermostability of dsDNA is below 50°C, increase in hydrostatic pressure will lead to destabilization; i.e., helix-to-coil transition has negative ΔV. In contrast, the dsDNA sequences with the thermostability above 50°C showed positive ΔV values and were stabilized by hydrostatic pressure. In order to get insight into this switch in the response of dsDNA to hydrostatic pressure as a function of temperature, first we further validated this trend using experimental measurements of ΔV for 10 different dsDNA sequences using pressure perturbation calorimetry. We also developed a computational protocol to calculate the expected volume changes of dsDNA unfolding, which was benchmarked against the experimental set of 50 ΔV values that included, in addition to our data, the values from the literature. Computation predicts well the experimental values of ΔV. Such agreement between computation and experiment lends credibility to the computation protocol and provides molecular level rational for the observed temperature dependence of ΔV that can be traced to the hydration. Difference in the ΔV value for A/T versus G/C basepairs is also discussed.
Collapse
Affiliation(s)
- George I Makhatadze
- Departments of Biological Sciences, Chemistry, and Chemical Biology, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York.
| | - Calvin R Chen
- Departments of Biological Sciences, Chemistry, and Chemical Biology, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Irine Khutsishvili
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska
| | - Luis A Marky
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
4
|
Comparison of the ionic effects of Ca2+ and Mg2+ on nucleic acids in liquids. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Ando N, Barquera B, Bartlett DH, Boyd E, Burnim AA, Byer AS, Colman D, Gillilan RE, Gruebele M, Makhatadze G, Royer CA, Shock E, Wand AJ, Watkins MB. The Molecular Basis for Life in Extreme Environments. Annu Rev Biophys 2021; 50:343-372. [PMID: 33637008 DOI: 10.1146/annurev-biophys-100120-072804] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sampling and genomic efforts over the past decade have revealed an enormous quantity and diversity of life in Earth's extreme environments. This new knowledge of life on Earth poses the challenge of understandingits molecular basis in such inhospitable conditions, given that such conditions lead to loss of structure and of function in biomolecules from mesophiles. In this review, we discuss the physicochemical properties of extreme environments. We present the state of recent progress in extreme environmental genomics. We then present an overview of our current understanding of the biomolecular adaptation to extreme conditions. As our current and future understanding of biomolecular structure-function relationships in extremophiles requires methodologies adapted to extremes of pressure, temperature, and chemical composition, advances in instrumentation for probing biophysical properties under extreme conditions are presented. Finally, we briefly discuss possible future directions in extreme biophysics.
Collapse
Affiliation(s)
- Nozomi Ando
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, USA.,Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Blanca Barquera
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA;
| | - Douglas H Bartlett
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202, USA
| | - Eric Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, USA
| | - Audrey A Burnim
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Amanda S Byer
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Daniel Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, USA
| | - Richard E Gillilan
- Center for High Energy X-ray Sciences (CHEXS), Ithaca, New York 14853, USA
| | - Martin Gruebele
- Department of Chemistry, University of Illinois, Urbana-Champaign, Illinois 61801, USA.,Department of Physics, University of Illinois, Urbana-Champaign, Illinois 61801, USA.,Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Illinois 61801, USA
| | - George Makhatadze
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA;
| | - Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA;
| | - Everett Shock
- GEOPIG, School of Earth & Space Exploration, School of Molecular Sciences, Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona 85287, USA
| | - A Joshua Wand
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77845, USA.,Department of Chemistry, Texas A&M University, College Station, Texas 77845, USA.,Department of Molecular & Cellular Medicine, Texas A&M University, College Station, Texas 77845, USA
| | - Maxwell B Watkins
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, USA.,Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|