1
|
Abioye RO, Adetula OH, Hum JD, Udenigwe CC. Influence of anti-fibrillation TNGQ peptide and rutin combination on β-cell cytoprotective effects against IAPP-induced cell death and oxidative stress. Biochem Biophys Res Commun 2024; 739:150976. [PMID: 39556938 DOI: 10.1016/j.bbrc.2024.150976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/21/2024] [Accepted: 11/10/2024] [Indexed: 11/20/2024]
Abstract
Type 2 diabetes development has been associated with islet amyloid polypeptide (IAPP) fibrillation. IAPP fibrils have various deleterious effects, such as oxidative stress and disruption of cellular membrane integrity, resulting in pancreatic β-cell toxicity. Rutin, a plant polyphenol, possesses promising cytoprotective effects as a fibrillation inhibitor. Similarly, bioactive peptides have been identified as potential inhibitors to IAPP fibrillation. In this study, the effect of peptide/polyphenol mixtures consisting of rutin and each peptide, TNGQ, MANT, and YMSV, on anti-fibrillation activity and cellular response was elucidated. Results indicated a 54.7-75.1 % decrease in thioflavin T fluorescence, confirming anti-fibrillation activity. The combination decreased the average particle diameters of IAPP more than the single inhibitors, suggesting a combined effect of peptide/rutin mixtures in enhancing anti-fibrillation activity. IAPP fibrillation-induced rat insulinoma RIN-m cell death was minimized in the presence of the peptide/rutin mixture, but the activity was lower relative to rutin alone, suggesting a non-additive effect of the mixtures. Transmission electron microscopy showed a near-complete inhibition of IAPP fibrillation by TNGQ/rutin mixtures, which translated to a decreased production of membrane-bound IAPP oligomers in RIN-m cells based on immunofluorescence staining. Additionally, TNGQ/rutin mixtures significantly decreased reactive oxygen species production by 30 %, higher than the effects of single inhibitors, but no effect was observed on glucose-stimulated insulin secretion. The results demonstrate the potential of multifunctional compounds as dual inhibitor systems in controlling IAPP fibrillation and provide insight into the implications of peptide/polyphenol mixtures towards the rational development of novel anti-diabetic nutraceutical combinations.
Collapse
Affiliation(s)
- Raliat O Abioye
- School of Nutrition Sciences, Health Sciences, University of Ottawa, Ottawa, K1H 8M5, Canada; Department of Chemistry and Biomolecular Sciences, Science, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Oluwasemilogo H Adetula
- School of Nutrition Sciences, Health Sciences, University of Ottawa, Ottawa, K1H 8M5, Canada
| | - Julia Diem Hum
- School of Nutrition Sciences, Health Sciences, University of Ottawa, Ottawa, K1H 8M5, Canada
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Health Sciences, University of Ottawa, Ottawa, K1H 8M5, Canada; Department of Chemistry and Biomolecular Sciences, Science, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada; University Food Properties and Nutrient Bioavailability, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.
| |
Collapse
|
2
|
Dai Z, Ben-Younis A, Vlachaki A, Raleigh D, Thalassinos K. Understanding the structural dynamics of human islet amyloid polypeptide: Advancements in and applications of ion-mobility mass spectrometry. Biophys Chem 2024; 312:107285. [PMID: 38941872 PMCID: PMC11260546 DOI: 10.1016/j.bpc.2024.107285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/30/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Human islet amyloid polypeptide (hIAPP) forms amyloid deposits that contribute to β-cell death in pancreatic islets and are considered a hallmark of Type II diabetes Mellitus (T2DM). Evidence suggests that the early oligomers of hIAPP formed during the aggregation process are the primary pathological agent in islet amyloid induced β-cell death. The self-assembly mechanism of hIAPP, however, remains elusive, largely due to limitations in conventional biophysical techniques for probing the distribution or capturing detailed structures of the early, structurally dynamic oligomers. The advent of Ion-mobility Mass Spectrometry (IM-MS) has enabled the characterisation of hIAPP early oligomers in the gas phase, paving the way towards a deeper understanding of the oligomerisation mechanism and the correlation of structural information with the cytotoxicity of the oligomers. The sensitivity and the rapid structural characterisation provided by IM-MS also show promise in screening hIAPP inhibitors, categorising their modes of inhibition through "spectral fingerprints". This review delves into the application of IM-MS to the dissection of the complex steps of hIAPP oligomerisation, examining the inhibitory influence of metal ions, and exploring the characterisation of hetero-oligomerisation with different hIAPP variants. We highlight the potential of IM-MS as a tool for the high-throughput screening of hIAPP inhibitors, and for providing insights into their modes of action. Finally, we discuss advances afforded by recent advancements in tandem IM-MS and the combination of gas phase spectroscopy with IM-MS, which promise to deliver a more sensitive and higher-resolution structural portrait of hIAPP oligomers. Such information may help facilitate a new era of targeted therapeutic strategies for islet amyloidosis in T2DM.
Collapse
Affiliation(s)
- Zijie Dai
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK
| | - Aisha Ben-Younis
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK
| | - Anna Vlachaki
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Daniel Raleigh
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK; Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States.
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK; Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK.
| |
Collapse
|
3
|
Peng B, Xu S, Liang Y, Dong X, Sun Y. Effect of Bacterial Amyloid Protein Phenol-Soluble Modulin Alpha 3 on the Aggregation of Amyloid Beta Protein Associated with Alzheimer's Disease. Biomimetics (Basel) 2023; 8:459. [PMID: 37887589 PMCID: PMC10604207 DOI: 10.3390/biomimetics8060459] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Since the proposal of the brainstem axis theory, increasing research attention has been paid to the interactions between bacterial amyloids produced by intestinal flora and the amyloid β-protein (Aβ) related to Alzheimer's disease (AD), and it has been considered as the possible cause of AD. Therefore, phenol-soluble modulin (PSM) α3, the most virulent protein secreted by Staphylococcus aureus, has attracted much attention. In this work, the effect of PSMα3 with a unique cross-α fibril architecture on the aggregation of pathogenic Aβ40 of AD was studied by extensive biophysical characterizations. The results proposed that the PSMα3 monomer inhibited the aggregation of Aβ40 in a concentration-dependent manner and changed the aggregation pathway to form granular aggregates. However, PSMα3 oligomers promoted the generation of the β-sheet structure, thus shortening the lag phase of Aβ40 aggregation. Moreover, the higher the cross-α content of PSMα3, the stronger the effect of the promotion, indicating that the cross-α structure of PSMα3 plays a crucial role in the aggregation of Aβ40. Further molecular dynamics (MD) simulations have shown that the Met1-Gly20 region in the PSMα3 monomer can be combined with the Asp1-Ala2 and His13-Val36 regions in the Aβ40 monomer by hydrophobic and electrostatic interactions, which prevents the conformational conversion of Aβ40 from the α-helix to β-sheet structure. By contrast, PSMα3 oligomers mainly combined with the central hydrophobic core (CHC) and the C-terminal region of the Aβ40 monomer by weak H-bonding and hydrophobic interactions, which could not inhibit the transition to the β-sheet structure in the aggregation pathway. Thus, the research has unraveled molecular interactions between Aβ40 and PSMα3 of different structures and provided a deeper understanding of the complex interactions between bacterial amyloids and AD-related pathogenic Aβ.
Collapse
Affiliation(s)
| | | | | | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China; (B.P.); (S.X.); (Y.L.)
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China; (B.P.); (S.X.); (Y.L.)
| |
Collapse
|
4
|
Moracci L, Crotti S, Traldi P, Agostini M, Cosma C, Lapolla A. Role of mass spectrometry in the study of interactions between amylin and metal ions. MASS SPECTROMETRY REVIEWS 2023; 42:984-1007. [PMID: 34558100 DOI: 10.1002/mas.21732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Amylin (islet amyloid polypeptide [IAPP]) is a neuroendocrine hormone synthesized with insulin in the beta cells of pancreatic islets. The two hormones act in different ways: in fact insulin triggers glucose uptake in muscle and liver cells, removing glucose from the bloodstream and making it available for energy use and storage, while amylin regulates glucose homeostasis. Aside these positive physiological aspects, human amyloid polypeptide (hIAPP) readily forms amyloid in vitro. Amyloids are aggregates of proteins and in the human body amyloids are considered responsible of the development of various diseases. These aspects have been widely described and discussed in literature and to give a view of the highly complexity of this biochemical behavior the different physical, chemical, biological and medical aspects are shortly described in this review. It is strongly affected by the presence on metal ions, responsible for or inhibiting the formation of fibrils. Mass spectrometry resulted (and still results) to be a particularly powerful tool to obtain valid and effective experimental data to describe the hIAPP behavior. Aside classical approaches devoted to investigation on metal ion-hIAPP structures, which reflects on the identification of metal-protein interaction site(s) and of possible metal-induced conformational changes of the protein, interesting results have been obtained by ion mobility mass spectrometry, giving, on the basis of collisional cross-section data, information on both the oligomerization processes and the conformation changes. Laser ablation electrospray ionization-ion mobility spectrometry-mass spectrometry (LAESI-IMS-MS), allowed to obtain information on the binding stoichiometry, complex dissociation constant, and the oxidation state of the copper for the amylin-copper interaction. Alternatively to inorganic ions, small organic molecules have been tested by ESI-IMS-MS as inhibitor of amyloid assembly. Also in this case the obtained data demonstrate the validity of the ESI-IMS-MS approach as a high-throughput screen for inhibitors of amyloid assembly, providing valid information concerning the identity of the interacting species, the nature of binding and the effect of the ligand on protein aggregation. Effects of Cu2+ and Zn2+ ions in the degradation of human and murine IAPP by insulin-degrading enzyme were studied by liquid chromatography/mass spectrometry (LC/MS). The literature data show that mass spectrometry is a highly valid and effective tool in the study of the amylin behavior, so to individuate medical strategies to avoid the undesired formation of amyloids in in vivo conditions.
Collapse
Affiliation(s)
- Laura Moracci
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Sara Crotti
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Pietro Traldi
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Marco Agostini
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Chiara Cosma
- Department of Medicine, University of Padova, Padova, Italy
| | | |
Collapse
|
5
|
Suh JM, Kim M, Yoo J, Han J, Paulina C, Lim MH. Intercommunication between metal ions and amyloidogenic peptides or proteins in protein misfolding disorders. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Roham PH, Save SN, Sharma S. Human islet amyloid polypeptide: A therapeutic target for the management of type 2 diabetes mellitus. J Pharm Anal 2022; 12:556-569. [PMID: 36105173 PMCID: PMC9463490 DOI: 10.1016/j.jpha.2022.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/21/2022] [Accepted: 04/01/2022] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) and other metabolic disorders are often silent and go unnoticed in patients because of the lack of suitable prognostic and diagnostic markers. The current therapeutic regimens available for managing T2DM do not reverse diabetes; instead, they delay the progression of diabetes. Their efficacy (in principle) may be significantly improved if implemented at earlier stages. The misfolding and aggregation of human islet amyloid polypeptide (hIAPP) or amylin has been associated with a gradual decrease in pancreatic β-cell function and mass in patients with T2DM. Hence, hIAPP has been recognized as a therapeutic target for managing T2DM. This review summarizes hIAPP's role in mediating dysfunction and apoptosis in pancreatic β-cells via induction of endoplasmic reticulum stress, oxidative stress, mitochondrial dysfunction, inflammatory cytokine secretion, autophagy blockade, etc. Furthermore, it explores the possibility of using intermediates of the hIAPP aggregation pathway as potential drug targets for T2DM management. Finally, the effects of common antidiabetic molecules and repurposed drugs; other hIAPP mimetics and peptides; small organic molecules and natural compounds; nanoparticles, nanobodies, and quantum dots; metals and metal complexes; and chaperones that have demonstrated potential to inhibit and/or reverse hIAPP aggregation and can, therefore, be further developed for managing T2DM have been discussed. Misfolded species of hIAPP form toxic oligomers in pancreatic β-cells. hIAPP amyloids has been detected in the pancreas of about 90% subjects with T2DM. Inhibitors of hIAPP aggregation can help manage T2DM.
Collapse
|
7
|
Potential of peptides and phytochemicals in attenuating different phases of islet amyloid polypeptide fibrillation for type 2 diabetes management. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Khemtemourian L, Antoniciello F, Sahoo BR, Decossas M, Lecomte S, Ramamoorthy A. Investigation of the effects of two major secretory granules components, insulin and zinc, on human-IAPP amyloid aggregation and membrane damage. Chem Phys Lipids 2021; 237:105083. [PMID: 33887213 DOI: 10.1016/j.chemphyslip.2021.105083] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/11/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023]
Abstract
Human islet amyloid polypeptide (hIAPP) is a highly amyloidogenic peptide found in pancreatic islets of type-2 diabetes (T2D) patients. Under certain conditions, hIAPP is able to form amyloid fibrils that play a role in the progression of T2D. hIAPP is synthesized in the β-cell of the pancreas and stored in the secretory granules before being released into the extracellular compartment. It has been suggested that natural stabilizing agents, such as insulin or zinc present in the secretory granules with hIAPP could prevent hIAPP fibril formation. The difference in the amino acid sequences of IAPP among species strongly correlates with amyloidogenicity and toxicity. The residue histidine at position 18 is known to be important in modulating the fibril formation, membrane leakage and toxicity. In this study, we have synthesized four analogues of hIAPP (H18R-IAPP, H18K-IAPP, H18A-IAPP and H18E-IAPP) and characterized their aggregation with either insulin or zinc in order to determine the effect of the residue-18 on the insulin-IAPP and zinc-IAPP interactions using a variety of biophysical experiments including thioflavin-T fluorescence, transmission electron microscopy imaging, circular dichroism, and NMR spectroscopy. We show that insulin reduced hIAPP fibril formation both in solution and in the presence of membrane and hIAPP-membrane damage and that the interactions are somewhat mediated by the residue-18. In addition, our results reveal that zinc affects the process of hIAPP fibril formation in solution but not in the presence of membrane. Our results indicate that the nature of the residue-18 is important for zinc binding. Based on this observation, we hypothesize that zinc binds to the residues in the N-terminal region of hIAPP, which is not accessible in the presence of membrane due to its strong interaction with lipids.
Collapse
Affiliation(s)
| | | | - Bikash R Sahoo
- Biophysics Program, Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Marion Decossas
- CBMN, CNRS UMR 5248, IPB, Univ. Bordeaux, F-33600 Pessac, France
| | - Sophie Lecomte
- CBMN, CNRS UMR 5248, IPB, Univ. Bordeaux, F-33600 Pessac, France
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
9
|
Ferguson MQ, DeRosa MC. Optimized experimental pre-treatment strategy for temporary inhibition of islet amyloid polypeptide aggregation. Biochem Biophys Rep 2021; 26:100964. [PMID: 33912690 PMCID: PMC8063701 DOI: 10.1016/j.bbrep.2021.100964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 11/24/2022] Open
Abstract
Islet amyloid polypeptide (IAPP) is a neuroendocrine hormone from pancreatic β-cells. Misfolded, aggregated IAPP is believed to be toxic to islet cells and amyloid deposits in the pancreas are pathological hallmarks of type 2 diabetes. Rapid fibrillization of this peptide makes it difficult to study in its soluble form, impeding a better understanding of its role. In this study, a variety of popular pretreatment methods were tested for their ability to delay aggregation of IAPP, including solutions of hexafluoroisopropanol, sodium hydroxide, hydrochloric acid, phosphate buffered saline, ammonium hydroxide, as well as tris buffer at different pH and containing either calcium (II), zinc (II), or iron (II). Aggregation was assessed using the thioflavin T fluorescence assay as well as by transmission electron microscopy. Tris buffer at pH 8.1 containing Zn(II) was found to have the best balance of temporary inhibition of aggregation and biological relevance.
Collapse
Affiliation(s)
- Madison Q Ferguson
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Maria C DeRosa
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| |
Collapse
|
10
|
Gray ALH, Antevska A, Link BA, Bogin B, Burke SJ, Dupuy SD, Collier JJ, Levine ZA, Karlstad MD, Do TD. α-CGRP disrupts amylin fibrillization and regulates insulin secretion: implications on diabetes and migraine. Chem Sci 2021; 12:5853-5864. [PMID: 34168810 PMCID: PMC8179678 DOI: 10.1039/d1sc01167g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/13/2021] [Indexed: 11/21/2022] Open
Abstract
Despite being relatively benign and not an indicative signature of toxicity, fibril formation and fibrillar structures continue to be key factors in assessing the structure-function relationship in protein aggregation diseases. The inability to capture molecular cross-talk among key players at the tissue level before fibril formation greatly accounts for the missing link toward the development of an efficacious therapeutic intervention for Type II diabetes mellitus (T2DM). We show that human α-calcitonin gene-related peptide (α-CGRP) remodeled amylin fibrillization. Furthermore, while CGRP and/or amylin monomers reduce the secretion of both mouse Ins1 and Ins2 proteins, CGRP oligomers have a reverse effect on Ins1. Genetically reduced Ins2, the orthologous version of human insulin, has been shown to enhance insulin sensitivity and extend the life-span in old female mice. Beyond the mechanistic insights, our data suggest that CGRP regulates insulin secretion and lowers the risk of T2DM. Our result rationalizes how migraine might be protective against T2DM. We envision the new paradigm of CGRP : amylin interactions as a pivotal aspect for T2DM diagnostics and therapeutics. Maintaining a low level of amylin while increasing the level of CGRP could become a viable approach toward T2DM prevention and treatment.
Collapse
Affiliation(s)
- Amber L H Gray
- Department of Chemistry, University of Tennessee Knoxville TN 37996 USA
| | | | - Benjamin A Link
- Department of Chemistry, University of Tennessee Knoxville TN 37996 USA
| | - Bryan Bogin
- Department of Pathology, Yale School of Medicine New Haven CT 06520 USA
- Department of Molecular Biophysics & Biochemistry, Yale University New Haven CT 0652 USA
| | - Susan J Burke
- Laboratory of Immunogenetics, Pennington Biomedical Research Center Baton Rouge LA 70808 USA
| | - Samuel D Dupuy
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center Knoxville TN 37920 USA
| | - J Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center Baton Rouge LA 70808 USA
| | - Zachary A Levine
- Department of Pathology, Yale School of Medicine New Haven CT 06520 USA
- Department of Molecular Biophysics & Biochemistry, Yale University New Haven CT 0652 USA
| | - Michael D Karlstad
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center Knoxville TN 37920 USA
| | - Thanh D Do
- Department of Chemistry, University of Tennessee Knoxville TN 37996 USA
| |
Collapse
|
11
|
Magrì A, Tabbì G, Di Natale G, La Mendola D, Pietropaolo A, Zoroddu MA, Peana M, Rizzarelli E. Zinc Interactions with a Soluble Mutated Rat Amylin to Mimic Whole Human Amylin: An Experimental and Simulation Approach to Understand Stoichiometry, Speciation and Coordination of the Metal Complexes. Chemistry 2020; 26:13072-13084. [DOI: 10.1002/chem.202002114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/29/2020] [Indexed: 01/27/2023]
Affiliation(s)
- Antonio Magrì
- Consiglio Nazionale delle Ricerche Istituto di Cristallografia Via P. Gaifami 18 95126 Catania Italy
| | - Giovanni Tabbì
- Consiglio Nazionale delle Ricerche Istituto di Cristallografia Via P. Gaifami 18 95126 Catania Italy
| | - Giuseppe Di Natale
- Consiglio Nazionale delle Ricerche Istituto di Cristallografia Via P. Gaifami 18 95126 Catania Italy
| | - Diego La Mendola
- Dipartimento di Farmacia Università di Pisa Via Bonanno Pisano, 6 56126 Pisa Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei, Metalli nei Sistemi Biologici (CIRCMSB) Via Celso Ulpiani 27 70126 Bari Italy
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute Università “Magna Graecia” di Catanzaro Campus Universitario, Viale Europa 88100 Catanzaro Italy
| | | | - Massimiliano Peana
- Dipartimento di Chimica e Farmacia University of Sassari Via Vienna 2 07100 Sassari Italy
| | - Enrico Rizzarelli
- Consiglio Nazionale delle Ricerche Istituto di Cristallografia Via P. Gaifami 18 95126 Catania Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei, Metalli nei Sistemi Biologici (CIRCMSB) Via Celso Ulpiani 27 70126 Bari Italy
- Dipartimento di Scienze Chimiche Università degli Studi di Catania Viale A. Doria 6 95125 Catania Italy
| |
Collapse
|
12
|
Heo K, Im J, Lee JS, Jo J, Kim S, Kim J, Lim J. High-Rate Blended Cathode with Mixed Morphology for All-Solid-State Li-ion Batteries. J ELECTROCHEM SCI TE 2020. [DOI: 10.33961/jecst.2019.00661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Milordini G, Zacco E, Percival M, Puglisi R, Dal Piaz F, Temussi P, Pastore A. The Role of Glycation on the Aggregation Properties of IAPP. Front Mol Biosci 2020; 7:104. [PMID: 32582762 PMCID: PMC7284065 DOI: 10.3389/fmolb.2020.00104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022] Open
Abstract
Epidemiological evidence shows an increased risk for developing Alzheimer's disease in people affected by diabetes, a pathology associated with increased hyperglycemia. A potential factor that could explain this link could be the role that sugars may play in both diseases under the form of glycation. Contrary to glycosylation, glycation is an enzyme-free reaction that leads to formation of toxic advanced glycation end-products (AGEs). In diabetes, the islet amyloid polypeptide (IAPP or amylin) is found to be heavily glycated and to form toxic amyloid-like aggregates, similar to those observed for the Aβ peptides, often also heavily glycated, observed in Alzheimer patients. Here, we studied the effects of glycation on the structure and aggregation properties of IAPP with several biophysical techniques ranging from fluorescence to circular dichroism, mass spectrometry and atomic force microscopy. We demonstrate that glycation occurs exclusively on the N-terminal lysine leaving the only arginine (Arg11) unmodified. At variance with recent studies, we show that the dynamical interplay between glycation and aggregation affects the structure of the peptide, slows down the aggregation process and influences the aggregate morphology.
Collapse
Affiliation(s)
- Giulia Milordini
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London, United Kingdom
| | - Elsa Zacco
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London, United Kingdom
| | - Matthew Percival
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London, United Kingdom
| | - Rita Puglisi
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London, United Kingdom
| | - Fabrizio Dal Piaz
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Pierandrea Temussi
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London, United Kingdom
| | - Annalisa Pastore
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London, United Kingdom
| |
Collapse
|
14
|
Kawahara M, Kato-Negishi M, Tanaka KI. Amyloids: Regulators of Metal Homeostasis in the Synapse. Molecules 2020; 25:molecules25061441. [PMID: 32210005 PMCID: PMC7145306 DOI: 10.3390/molecules25061441] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Conformational changes in amyloidogenic proteins, such as β-amyloid protein, prion proteins, and α-synuclein, play a critical role in the pathogenesis of numerous neurodegenerative diseases, including Alzheimer’s disease, prion disease, and Lewy body disease. The disease-associated proteins possess several common characteristics, including the ability to form amyloid oligomers with β-pleated sheet structure, as well as cytotoxicity, although they differ in amino acid sequence. Interestingly, these amyloidogenic proteins all possess the ability to bind trace metals, can regulate metal homeostasis, and are co-localized at the synapse, where metals are abundantly present. In this review, we discuss the physiological roles of these amyloidogenic proteins in metal homeostasis, and we propose hypothetical models of their pathogenetic role in the neurodegenerative process as the loss of normal metal regulatory functions of amyloidogenic proteins. Notably, these amyloidogenic proteins have the capacity to form Ca2+-permeable pores in membranes, suggestive of a toxic gain of function. Therefore, we focus on their potential role in the disruption of Ca2+ homeostasis in amyloid-associated neurodegenerative diseases.
Collapse
|