1
|
Tresset G, Li S, Gargowitsch L, Matthews L, Pérez J, Zandi R. Glass-like Relaxation Dynamics during the Disorder-to-Order Transition of Viral Nucleocapsids. J Phys Chem Lett 2024; 15:10210-10218. [PMID: 39356145 DOI: 10.1021/acs.jpclett.4c02158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Nucleocapsid self-assembly is an essential yet elusive step in virus replication. Using time-resolved small-angle X-ray scattering on a model icosahedral ssRNA virus, we reveal a previously unreported kinetic pathway. Initially, RNA-bound capsid subunits rapidly accumulate beyond the stoichiometry of native virions. This is followed by a disorder-to-order transition characterized by glass-like relaxation dynamics and the release of excess subunits. Our molecular dynamics simulations, employing a coarse-grained elastic model, confirm the physical feasibility of self-ordering accompanied by subunit release. The relaxation can be modeled by an exponential integral decay on the mean squared radius of gyration, with relaxation times varying within the second range depending on RNA type and subunit concentration. A nanogel model suggests that the initially disordered nucleoprotein complexes quickly reach an equilibrium size, while their mass fractal dimension continues to evolve. Understanding virus self-assembly is not only crucial for combating viral infections, but also for designing synthetic virus-inspired nanocages for drug delivery applications.
Collapse
Affiliation(s)
- Guillaume Tresset
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Siyu Li
- Department of Physics and Astronomy, University of California, Riverside, California 92521, United States
| | - Laetitia Gargowitsch
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | | | - Javier Pérez
- SOLEIL Synchrotron, 91192 Gif-sur-Yvette, France
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, United States
| |
Collapse
|
2
|
Tscheuschner G, Ponader M, Raab C, Weider PS, Hartfiel R, Kaufmann JO, Völzke JL, Bosc-Bierne G, Prinz C, Schwaar T, Andrle P, Bäßler H, Nguyen K, Zhu Y, Mey ASJS, Mostafa A, Bald I, Weller MG. Efficient Purification of Cowpea Chlorotic Mottle Virus by a Novel Peptide Aptamer. Viruses 2023; 15:v15030697. [PMID: 36992405 PMCID: PMC10051510 DOI: 10.3390/v15030697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/31/2023] Open
Abstract
The cowpea chlorotic mottle virus (CCMV) is a plant virus explored as a nanotechnological platform. The robust self-assembly mechanism of its capsid protein allows for drug encapsulation and targeted delivery. Additionally, the capsid nanoparticle can be used as a programmable platform to display different molecular moieties. In view of future applications, efficient production and purification of plant viruses are key steps. In established protocols, the need for ultracentrifugation is a significant limitation due to cost, difficult scalability, and safety issues. In addition, the purity of the final virus isolate often remains unclear. Here, an advanced protocol for the purification of the CCMV from infected plant tissue was developed, focusing on efficiency, economy, and final purity. The protocol involves precipitation with PEG 8000, followed by affinity extraction using a novel peptide aptamer. The efficiency of the protocol was validated using size exclusion chromatography, MALDI-TOF mass spectrometry, reversed-phase HPLC, and sandwich immunoassay. Furthermore, it was demonstrated that the final eluate of the affinity column is of exceptional purity (98.4%) determined by HPLC and detection at 220 nm. The scale-up of our proposed method seems to be straightforward, which opens the way to the large-scale production of such nanomaterials. This highly improved protocol may facilitate the use and implementation of plant viruses as nanotechnological platforms for in vitro and in vivo applications.
Collapse
Affiliation(s)
- Georg Tscheuschner
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Marco Ponader
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Christopher Raab
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Prisca S Weider
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Reni Hartfiel
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Jan Ole Kaufmann
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, 81675 Munich, Germany
| | - Jule L Völzke
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Gaby Bosc-Bierne
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Carsten Prinz
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | | | - Paul Andrle
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Henriette Bäßler
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Khoa Nguyen
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Yanchen Zhu
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK
| | - Antonia S J S Mey
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK
| | - Amr Mostafa
- Institute of Chemistry-Physical Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Ilko Bald
- Institute of Chemistry-Physical Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Michael G Weller
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| |
Collapse
|
3
|
Unravelling viral dynamics through molecular dynamics simulations - A brief overview. Biophys Chem 2022; 291:106908. [DOI: 10.1016/j.bpc.2022.106908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/24/2022]
|
4
|
Dynamic stability of salt stable cowpea chlorotic mottle virus capsid protein dimers and pentamers of dimers. Sci Rep 2022; 12:14251. [PMID: 35995818 PMCID: PMC9395436 DOI: 10.1038/s41598-022-18019-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Intermediates of the self-assembly process of the salt stable cowpea chlorotic mottle virus (ss-CCMV) capsid can be modelled atomistically on realistic computational timescales either by studying oligomers in equilibrium or by focusing on their dissociation instead of their association. Our previous studies showed that among the three possible dimer interfaces in the icosahedral capsid, two are thermodynamically relevant for capsid formation. The aim of the current study is to evaluate the relative structural stabilities of the three different ss-CCMV dimers and to find and understand the conditions that lead to their dissociation. Long timescale molecular dynamics simulations at 300 K of the various dimers and of the pentamer of dimers underscore the importance of large contact surfaces on stabilizing the capsid subunits within an oligomer. Simulations in implicit solvent show that at higher temperature (350 K), the N-terminal tails of the protein units act as tethers, delaying dissociation for all but the most stable interface. The pentamer of dimers is also found to be stable on long timescales at 300 K, with an inherent flexibility of the outer protein chains.
Collapse
|
5
|
Marichal L, Gargowitsch L, Rubim RL, Sizun C, Kra K, Bressanelli S, Dong Y, Panahandeh S, Zandi R, Tresset G. Relationships between RNA topology and nucleocapsid structure in a model icosahedral virus. Biophys J 2021; 120:3925-3936. [PMID: 34418368 PMCID: PMC8511167 DOI: 10.1016/j.bpj.2021.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/21/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022] Open
Abstract
The process of genome packaging in most of viruses is poorly understood, notably the role of the genome itself in the nucleocapsid structure. For simple icosahedral single-stranded RNA viruses, the branched topology due to the RNA secondary structure is thought to lower the free energy required to complete a virion. We investigate the structure of nucleocapsids packaging RNA segments with various degrees of compactness by small-angle x-ray scattering and cryotransmission electron microscopy. The structural differences are mild even though compact RNA segments lead on average to better-ordered and more uniform particles across the sample. Numerical calculations confirm that the free energy is lowered for the RNA segments displaying the larger number of branch points. The effect is, however, opposite with synthetic polyelectrolytes, in which a star topology gives rise to more disorder in the capsids than a linear topology. If RNA compactness and size account in part for the proper assembly of the nucleocapsid and the genome selectivity, other factors most likely related to the host cell environment during viral assembly must come into play as well.
Collapse
Affiliation(s)
- Laurent Marichal
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Laetitia Gargowitsch
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Rafael Leite Rubim
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Christina Sizun
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - Kalouna Kra
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France; Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Stéphane Bressanelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Yinan Dong
- Department of Physics and Astronomy, University of California, Riverside, California
| | - Sanaz Panahandeh
- Department of Physics and Astronomy, University of California, Riverside, California
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California
| | - Guillaume Tresset
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France.
| |
Collapse
|
6
|
Machado MR, Pantano S. Fighting viruses with computers, right now. Curr Opin Virol 2021; 48:91-99. [PMID: 33975154 DOI: 10.1016/j.coviro.2021.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/20/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
The synergistic conjunction of various technological revolutions with the accumulated knowledge and workflows is rapidly transforming several scientific fields. Particularly, Virology can now feed from accurate physical models, polished computational tools, and massive computational power to readily integrate high-resolution structures into biological representations of unprecedented detail. That preparedness allows for the first time to get crucial information for vaccine and drug design from in-silico experiments against emerging pathogens of worldwide concern at relevant action windows. The present work reviews some of the main milestones leading to these breakthroughs in Computational Virology, providing an outlook for future developments in capacity building and accessibility to computational resources.
Collapse
Affiliation(s)
- Matías R Machado
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay.
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay.
| |
Collapse
|
7
|
Božič A, Kanduč M. Relative humidity in droplet and airborne transmission of disease. J Biol Phys 2021; 47:1-29. [PMID: 33564965 PMCID: PMC7872882 DOI: 10.1007/s10867-020-09562-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
A large number of infectious diseases are transmitted by respiratory droplets. How long these droplets persist in the air, how far they can travel, and how long the pathogens they might carry survive are all decisive factors for the spread of droplet-borne diseases. The subject is extremely multifaceted and its aspects range across different disciplines, yet most of them have only seldom been considered in the physics community. In this review, we discuss the physical principles that govern the fate of respiratory droplets and any viruses trapped inside them, with a focus on the role of relative humidity. Importantly, low relative humidity-as encountered, for instance, indoors during winter and inside aircraft-facilitates evaporation and keeps even initially large droplets suspended in air as aerosol for extended periods of time. What is more, relative humidity affects the stability of viruses in aerosol through several physical mechanisms such as efflorescence and inactivation at the air-water interface, whose role in virus inactivation nonetheless remains poorly understood. Elucidating the role of relative humidity in the droplet spread of disease would permit us to design preventive measures that could aid in reducing the chance of transmission, particularly in indoor environment.
Collapse
Affiliation(s)
- Anže Božič
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Matej Kanduč
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
8
|
Maity B, Hishikawa Y, Lu D, Ueno T. Recent progresses in the accumulation of metal ions into the apo-ferritin cage: Experimental and theoretical perspectives. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.03.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|