1
|
Li Y, Ong HT, Cui H, Gao X, Lee JWN, Guo Y, Li R, Pennacchio FA, Maiuri P, Efremov AK, Holle AW. Confinement-sensitive volume regulation dynamics via high-speed nuclear morphological measurements. Proc Natl Acad Sci U S A 2024; 121:e2408595121. [PMID: 39700138 DOI: 10.1073/pnas.2408595121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/10/2024] [Indexed: 12/21/2024] Open
Abstract
Diverse tissues in vivo present varying degrees of confinement, constriction, and compression to migrating cells in both homeostasis and disease. The nucleus in particular is subjected to external forces by the physical environment during confined migration. While many systems have been developed to induce nuclear deformation and analyze resultant functional changes, much remains unclear about dynamic volume regulation in confinement due to limitations in time resolution and difficulty imaging in PDMS-based microfluidic chips. Standard volumetric measurement relies on confocal microscopy, which suffers from high phototoxicity, slow speed, limited throughput, and artifacts in fast-moving cells. To address this, we developed a form of double fluorescence exclusion microscopy, designed to function at the interface of microchannel-based PDMS sidewalls, that can track cellular and nuclear volume dynamics during confined migration. By verifying the vertical symmetry of nuclei in confinement, we obtained computational estimates of nuclear surface area. We then tracked nuclear volume and surface area under physiological confinement at a time resolution exceeding 30 frames per minute. We find that during self-induced entrance into confinement, the cell rapidly expands its surface area until a threshold is reached, followed by a rapid decrease in nuclear volume. We next used osmotic shock as a tool to alter nuclear volume in confinement, and found that the nuclear response to hypo-osmotic shock in confinement does not follow classical scaling laws, suggesting that the limited expansion potential of the nuclear envelope might be a constraining factor in nuclear volume regulation in confining environments in vivo.
Collapse
Affiliation(s)
- Yixuan Li
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Hui Ting Ong
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Hongyue Cui
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Xu Gao
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Jia Wen Nicole Lee
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Yuqi Guo
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Rong Li
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Fabrizio A Pennacchio
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zürich, Zurich 8006, Switzerland
| | - Paolo Maiuri
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples 80131, Italy
| | - Artem K Efremov
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Andrew W Holle
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| |
Collapse
|
2
|
Liu Z, Grigas AT, Sumner J, Knab E, Davis CM, O'Hern CS. Identifying the minimal sets of distance restraints for FRET-assisted protein structural modeling. Protein Sci 2024; 33:e5219. [PMID: 39548730 PMCID: PMC11568256 DOI: 10.1002/pro.5219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2024] [Indexed: 11/18/2024]
Abstract
Proteins naturally occur in crowded cellular environments and interact with other proteins, nucleic acids, and organelles. Since most previous experimental protein structure determination techniques require that proteins occur in idealized, non-physiological environments, the effects of realistic cellular environments on protein structure are largely unexplored. Recently, Förster resonance energy transfer (FRET) has been shown to be an effective experimental method for investigating protein structure in vivo. Inter-residue distances measured in vivo can be incorporated as restraints in molecular dynamics (MD) simulations to model protein structural dynamics in vivo. Since most FRET studies only obtain inter-residue separations for a small number of amino acid pairs, it is important to determine the minimum number of restraints in the MD simulations that are required to achieve a given root-mean-square deviation (RMSD) from the experimental structural ensemble. Further, what is the optimal method for selecting these inter-residue restraints? Here, we implement several methods for selecting the most important FRET pairs and determine the number of pairsN r $$ {N}_r $$ that are needed to induce conformational changes in proteins between two experimentally determined structures. We find that enforcing only a small fraction of restraints,N r / N ≲ 0.08 $$ {N}_r/N\lesssim 0.08 $$ , whereN $$ N $$ is the number of amino acids, can induce the conformational changes. These results establish the efficacy of FRET-assisted MD simulations for atomic scale structural modeling of proteins in vivo.
Collapse
Affiliation(s)
- Zhuoyi Liu
- Department of Mechanical Engineering and Materials ScienceYale UniversityNew HavenConnecticutUSA
- Integrated Graduate Program in Physical and Engineering BiologyYale UniversityNew HavenConnecticutUSA
| | - Alex T. Grigas
- Integrated Graduate Program in Physical and Engineering BiologyYale UniversityNew HavenConnecticutUSA
- Graduate Program in Computational Biology and BioinformaticsYale UniversityNew HavenConnecticutUSA
| | - Jacob Sumner
- Integrated Graduate Program in Physical and Engineering BiologyYale UniversityNew HavenConnecticutUSA
- Graduate Program in Computational Biology and BioinformaticsYale UniversityNew HavenConnecticutUSA
| | - Edward Knab
- Department of ChemistryYale UniversityNew HavenConnecticutUSA
| | | | - Corey S. O'Hern
- Department of Mechanical Engineering and Materials ScienceYale UniversityNew HavenConnecticutUSA
- Integrated Graduate Program in Physical and Engineering BiologyYale UniversityNew HavenConnecticutUSA
- Graduate Program in Computational Biology and BioinformaticsYale UniversityNew HavenConnecticutUSA
- Department of PhysicsYale UniversityNew HavenConnecticutUSA
- Department of Applied PhysicsYale UniversityNew HavenConnecticutUSA
| |
Collapse
|
3
|
Nicholson V, Meese E, Boothby TC. Osmolyte-IDP interactions during desiccation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 211:39-61. [PMID: 39947753 DOI: 10.1016/bs.pmbts.2024.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Desiccation, the extreme loss of water, poses a significant challenge to living organisms. Desiccation-tolerant organisms combat this in part by accumulating desiccation tolerance intrinsically disordered proteins (DT-IDPs) and osmolytes within their cells. While both osmolytes and DT-IDPs help maintain cellular viability on their own, combinations of the two can work synergistically to provide enhanced protection and survival. This review summarises our understanding of the interactions between DT-IDPs and osmolytes during desiccation, and explores possible molecular mechanisms underlying them. Using recent literature on DT-IDPs and on the broader study of IDP-osmolyte interactions, we propose several hypotheses that explain interactions between DT-IDPs and osmolytes. Finally, we highlight several techniques from literature on DT-IDPs that we feel are useful to the study of IDPs in other contexts.
Collapse
Affiliation(s)
- Vincent Nicholson
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Emma Meese
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Thomas C Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States.
| |
Collapse
|
4
|
Subramanya AR, Boyd-Shiwarski CR. Molecular Crowding: Physiologic Sensing and Control. Annu Rev Physiol 2024; 86:429-452. [PMID: 37931170 PMCID: PMC11472293 DOI: 10.1146/annurev-physiol-042222-025920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The cytoplasm is densely packed with molecules that contribute to its nonideal behavior. Cytosolic crowding influences chemical reaction rates, intracellular water mobility, and macromolecular complex formation. Overcrowding is potentially catastrophic; to counteract this problem, cells have evolved acute and chronic homeostatic mechanisms that optimize cellular crowdedness. Here, we provide a physiology-focused overview of molecular crowding, highlighting contemporary advances in our understanding of its sensing and control. Long hypothesized as a form of crowding-induced microcompartmentation, phase separation allows cells to detect and respond to intracellular crowding through the action of biomolecular condensates, as indicated by recent studies. Growing evidence indicates that crowding is closely tied to cell size and fluid volume, homeostatic responses to physical compression and desiccation, tissue architecture, circadian rhythm, aging, transepithelial transport, and total body electrolyte and water balance. Thus, molecular crowding is a fundamental physiologic parameter that impacts diverse functions extending from molecule to organism.
Collapse
Affiliation(s)
- Arohan R Subramanya
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; ,
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Cary R Boyd-Shiwarski
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; ,
- Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Moses D, Guadalupe K, Yu F, Flores E, Perez AR, McAnelly R, Shamoon NM, Kaur G, Cuevas-Zepeda E, Merg AD, Martin EW, Holehouse AS, Sukenik S. Structural biases in disordered proteins are prevalent in the cell. Nat Struct Mol Biol 2024; 31:283-292. [PMID: 38177684 PMCID: PMC10873198 DOI: 10.1038/s41594-023-01148-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/04/2023] [Indexed: 01/06/2024]
Abstract
Intrinsically disordered proteins and protein regions (IDPs) are prevalent in all proteomes and are essential to cellular function. Unlike folded proteins, IDPs exist in an ensemble of dissimilar conformations. Despite this structural plasticity, intramolecular interactions create sequence-specific structural biases that determine an IDP ensemble's three-dimensional shape. Such structural biases can be key to IDP function and are often measured in vitro, but whether those biases are preserved inside the cell is unclear. Here we show that structural biases in IDP ensembles found in vitro are recapitulated inside human-derived cells. We further reveal that structural biases can change in a sequence-dependent manner due to changes in the intracellular milieu, subcellular localization, and intramolecular interactions with tethered well-folded domains. We propose that the structural sensitivity of IDP ensembles can be leveraged for biological function, can be the underlying cause of IDP-driven pathology or can be used to design disorder-based biosensors and actuators.
Collapse
Affiliation(s)
- David Moses
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA
| | - Karina Guadalupe
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA
| | - Feng Yu
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA
- Quantitative and Systems Biology Program, University of California, Merced, Merced, CA, USA
| | - Eduardo Flores
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA
| | - Anthony R Perez
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA
| | - Ralph McAnelly
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
| | - Nora M Shamoon
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA
- California State University, Stanislaus, Turlock, CA, USA
| | - Gagandeep Kaur
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
| | | | - Andrea D Merg
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA
| | - Erik W Martin
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
- Dewpoint Therapeutics, Boston, MA, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO, USA
| | - Shahar Sukenik
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA.
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA.
- Quantitative and Systems Biology Program, University of California, Merced, Merced, CA, USA.
- Health Sciences Research Institute, University of California, Merced, Merced, CA, USA.
| |
Collapse
|
6
|
Moses D, Ginell GM, Holehouse AS, Sukenik S. Intrinsically disordered regions are poised to act as sensors of cellular chemistry. Trends Biochem Sci 2023; 48:1019-1034. [PMID: 37657994 PMCID: PMC10840941 DOI: 10.1016/j.tibs.2023.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
Intrinsically disordered proteins and protein regions (IDRs) are abundant in eukaryotic proteomes and play a wide variety of essential roles. Instead of folding into a stable structure, IDRs exist in an ensemble of interconverting conformations whose structure is biased by sequence-dependent interactions. The absence of a stable 3D structure, combined with high solvent accessibility, means that IDR conformational biases are inherently sensitive to changes in their environment. Here, we argue that IDRs are ideally poised to act as sensors and actuators of cellular physicochemistry. We review the physical principles that underlie IDR sensitivity, the molecular mechanisms that translate this sensitivity to function, and recent studies where environmental sensing by IDRs may play a key role in their downstream function.
Collapse
Affiliation(s)
- David Moses
- Department of Chemistry and Biochemistry, University of California, Merced, CA, USA
| | - Garrett M Ginell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA.
| | - Shahar Sukenik
- Department of Chemistry and Biochemistry, University of California, Merced, CA, USA; Quantitative Systems Biology Program, University of California, Merced, CA, USA.
| |
Collapse
|
7
|
Rickard MM, Luo H, De Lio A, Gruebele M, Pogorelov TV. Impact of the Cellular Environment on Adenosine Triphosphate Conformations. J Phys Chem Lett 2022; 13:9809-9814. [PMID: 36228115 PMCID: PMC10077521 DOI: 10.1021/acs.jpclett.2c02375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The cytoplasm is an environment crowded by macromolecules and filled with metabolites and ions. Recent experimental and computational studies have addressed how this environment affects protein stability, folding kinetics, and protein-protein and protein-nucleic acid interactions, though its impact on metabolites remains largely unknown. Here we show how a simulated cytoplasm affects the conformation of adenosine triphosphate (ATP), a key energy source and regulatory metabolite present at high concentrations in cells. Analysis of our all-atom model of a small volume of the Escherichia coli cytoplasm when contrasted with ATP modeled in vitro or resolved with protein structures deposited in the Protein Data Bank reveals that ATP molecules bound to proteins in cell form specific pitched conformations that are not observed at significant concentrations in the other environments. We hypothesize that these interactions evolved to fulfill functional roles when ATP interacts with protein surfaces.
Collapse
Affiliation(s)
- Meredith M. Rickard
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Haolin Luo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Ashley De Lio
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- National Center for Supercomputing Applications, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Martin Gruebele
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Taras V. Pogorelov
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- National Center for Supercomputing Applications, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
8
|
Cubuk J, Soranno A. Macromolecular crowding and intrinsically disordered proteins: a polymer physics perspective. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202100051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jasmine Cubuk
- Washington University in St Louis Biochemistry and Molecular Biophysics UNITED STATES
| | - Andrea Soranno
- Washington University in St Louis Biochemistry and Molecular Biophysics 660 St Euclid Ave 63110 St Louis UNITED STATES
| |
Collapse
|
9
|
Ribeiro SS, Castro TG, Gomes CM, Marcos JC. Hofmeister effects on protein stability are dependent on the nature of the unfolded state. Phys Chem Chem Phys 2021; 23:25210-25225. [PMID: 34730580 DOI: 10.1039/d1cp02477a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interpretation of a salt's effect on protein stability traditionally discriminates low concentration regimes (<0.3 M), dominated by electrostatic forces, and high concentration regimes, generally described by ion-specific Hofmeister effects. However, increased theoretical and experimental studies have highlighted observations of the Hofmeister phenomena at concentration ranges as low as 0.001 M. Reasonable quantitative predictions of such observations have been successfully achieved throughout the inclusion of ion dispersion forces in classical electrostatic theories. This molecular description is also on the basis of quantitative estimates obtained resorting to surface/bulk solvent partition models developed for ion-specific Hofmeister effects. However, the latter are limited by the availability of reliable structures representative of the unfolded state. Here, we use myoglobin as a model to explore how ion-dependency on the nature of the unfolded state affects protein stability, combining spectroscopic techniques with molecular dynamic simulations. To this end, the thermal and chemical stability of myoglobin was assessed in the presence of three different salts (NaCl, (NH4)2SO4 and Na2SO4), at physiologically relevant concentrations (0-0.3 M). We observed mild destabilization of the native state induced by each ion, attributed to unfavorable neutralization and hydrogen-bonding with the protein side-chains. Both effects, combined with binding of Na+, Cl- and SO42- to the thermally unfolded state, resulted in an overall destabilization of the protein. Contrastingly, ion binding was hindered in the chemically unfolded conformation, due to occupation of the binding sites by urea molecules. Such mechanistic action led to a lower degree of destabilization, promoting surface tension effects that stabilized myoglobin according to the Hofmeister series. Therefore, we demonstrate that Hofmeister effects on protein stability are modulated by the heterogeneous physico-chemical nature of the unfolded state. Altogether, our findings evidence the need to characterize the structure of the unfolded state when attempting to dissect the molecular mechanisms underlying the effects of salts on protein stability.
Collapse
Affiliation(s)
- Sara S Ribeiro
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Tarsila G Castro
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cláudio M Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências and Departamento de Química e Bioquímica, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - João C Marcos
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
10
|
Alston JJ, Soranno A, Holehouse AS. Integrating single-molecule spectroscopy and simulations for the study of intrinsically disordered proteins. Methods 2021; 193:116-135. [PMID: 33831596 PMCID: PMC8713295 DOI: 10.1016/j.ymeth.2021.03.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Over the last two decades, intrinsically disordered proteins and protein regions (IDRs) have emerged from a niche corner of biophysics to be recognized as essential drivers of cellular function. Various techniques have provided fundamental insight into the function and dysfunction of IDRs. Among these techniques, single-molecule fluorescence spectroscopy and molecular simulations have played a major role in shaping our modern understanding of the sequence-encoded conformational behavior of disordered proteins. While both techniques are frequently used in isolation, when combined they offer synergistic and complementary information that can help uncover complex molecular details. Here we offer an overview of single-molecule fluorescence spectroscopy and molecular simulations in the context of studying disordered proteins. We discuss the various means in which simulations and single-molecule spectroscopy can be integrated, and consider a number of studies in which this integration has uncovered biological and biophysical mechanisms.
Collapse
Affiliation(s)
- Jhullian J Alston
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis 63110, MO, USA; Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis 63130, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis 63110, MO, USA; Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis 63130, MO, USA.
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis 63110, MO, USA; Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis 63130, MO, USA.
| |
Collapse
|
11
|
It is time to crowd your cell culture media - Physicochemical considerations with biological consequences. Biomaterials 2021; 275:120943. [PMID: 34139505 DOI: 10.1016/j.biomaterials.2021.120943] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
In vivo, the interior and exterior of cells is populated by various macromolecules that create an extremely crowded milieu. Yet again, in vitro eukaryotic cell culture is conducted in dilute culture media that hardly imitate the native tissue density. Herein, the concept of macromolecular crowding is discussed in both intracellular and extracellular context. Particular emphasis is given on how the physicochemical properties of the crowding molecules govern and determine kinetics, equilibria and mechanism of action of biochemical and biological reactions, processes and functions. It is evidenced that we are still at the beginning of appreciating, let alone effectively implementing, the potential of macromolecular crowding in permanently differentiated and stem cell culture systems.
Collapse
|
12
|
Gruebele M. Protein folding and surface interaction phase diagrams in vitro and in cells. FEBS Lett 2021; 595:1267-1274. [PMID: 33576021 DOI: 10.1002/1873-3468.14058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 11/11/2022]
Abstract
Protein stability is subject to environmental perturbations such as pressure and crowding, as well as sticking to other macromolecules and quinary structure. Thus, the environment inside and outside the cell plays a key role in how proteins fold, interact, and function on the scale from a few molecules to macroscopic ensembles. This review discusses three aspects of protein phase diagrams: first, the relevance of phase diagrams to protein folding and function in vitro and in cells; next, how the evolution of protein surfaces impacts on interaction phase diagrams; and finally, how phase separation plays a role on much larger length-scales than individual proteins or oligomers, when liquid phase-separated regions form to assist protein function and cell homeostasis.
Collapse
Affiliation(s)
- Martin Gruebele
- Department of Chemistry and Physics, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
13
|
Zeugolis DI. Bioinspired in vitro microenvironments to control cell fate: focus on macromolecular crowding. Am J Physiol Cell Physiol 2021; 320:C842-C849. [PMID: 33656930 DOI: 10.1152/ajpcell.00380.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of therapeutic regenerative medicine and accurate drug discovery cell-based products requires effective, with respect to obtaining sufficient numbers of viable, proliferative, and functional cell populations, cell expansion ex vivo. Unfortunately, traditional cell culture systems fail to recapitulate the multifaceted tissue milieu in vitro, resulting in cell phenotypic drift, loss of functionality, senescence, and apoptosis. Substrate-, environment-, and media-induced approaches are under intense investigation as a means to maintain cell phenotype and function while in culture. In this context, herein, the potential of macromolecular crowding, a biophysical phenomenon with considerable biological consequences, is discussed.
Collapse
Affiliation(s)
- Dimitrios I Zeugolis
- Regenerative, Modular, and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway, Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway, Galway, Ireland.,Faculty of Biomedical Sciences, Regenerative, Modular, and Developmental Engineering Laboratory (REMODEL), Università della Svizzera Italiana, Lugano, Switzerland.,Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Gopan G, Gruebele M, Rickard M. In-cell protein landscapes: making the match between theory, simulation and experiment. Curr Opin Struct Biol 2020; 66:163-169. [PMID: 33254078 DOI: 10.1016/j.sbi.2020.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/10/2020] [Indexed: 11/26/2022]
Abstract
Theory, computation and experiment have matched up for the folding of small proteins in vitro, a difficult feat because folding energy landscapes are fairly smooth and free energy differences between states are small. Smoothness means that protein structure and folding are susceptible to the local environment inside living cells. Theory, computation and experiment are now exploring cellular modulation of energy landscapes. Interesting concepts have emerged, such as co-evolution of protein surfaces with their cellular environment to reduce detrimental interactions. Here we look at very recent work beginning to bring together theory, simulations and experiments in the area of protein landscape modulation, to see what problems might be solved in the near future by combining these approaches.
Collapse
Affiliation(s)
- Gopika Gopan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Martin Gruebele
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Meredith Rickard
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
15
|
The road less traveled in protein folding: evidence for multiple pathways. Curr Opin Struct Biol 2020; 66:83-88. [PMID: 33220553 DOI: 10.1016/j.sbi.2020.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/11/2020] [Indexed: 11/23/2022]
Abstract
Free Energy Landscape theory of Protein Folding, introduced over 20 years ago, implies that a protein has many paths to the folded conformation with the lowest free energy. Despite the knowledge in principle, it has been remarkably hard to detect such pathways. The lack of such observations is primarily due to the fact that no one experimental technique can detect many parts of the protein simultaneously with the time resolution necessary to see such differences in paths. However, recent technical developments and employment of multiple experimental probes and folding prompts have illuminated multiple folding pathways in a number of proteins that had all previously been described with a single path.
Collapse
|
16
|
Taylor MP, Vinci C, Suzuki R. Effects of macromolecular crowding on the folding of a polymer chain: A Wang-Landau simulation study. J Chem Phys 2020; 153:174901. [PMID: 33167653 DOI: 10.1063/5.0025640] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A flexible polymer chain in the presence of inert macromolecular crowders will experience a loss of configurational entropy due to the crowder excluded volume. This entropy reduction will be most pronounced in good solvent conditions where the chain assumes an expanded coil conformation. For polymers that undergo a folding transition from a coil to a compact ordered state, as is the case for many globular proteins, macromolecular crowding is expected to stabilize the folded state and thereby shift the transition location. Here, we study such entropic stabilization effects for a tangent square-well sphere chain (monomer diameter σ) in the presence of hard-sphere (HS) crowders (diameter D ≥ σ). We use the Wang-Landau simulation algorithm to construct the density of states for this chain in a crowded environment and are thus able to directly compute the reduction in configurational entropy due to crowding. We study both a chain that undergoes all-or-none folding directly from the coil state and a chain that folds via a collapsed-globule intermediate state. In each case, we find an increase in entropic stabilization for the compact states with an increase in crowder density and, for fixed crowder density, with a decrease in crowder size (concentrated, small crowders have the largest effect). The crowder significantly reduces the average size for the unfolded states while having a minimal effect on the size of the folded states. In the athermal limit, our results directly provide the confinement free energy due to crowding for a HS chain in a HS solvent.
Collapse
Affiliation(s)
- Mark P Taylor
- Department of Physics, Hiram College, Hiram, Ohio 44234, USA
| | | | - Ryogo Suzuki
- Department of Physics, Hiram College, Hiram, Ohio 44234, USA
| |
Collapse
|
17
|
Davis CM, Gruebele M. Cytoskeletal Drugs Modulate Off-Target Protein Folding Landscapes Inside Cells. Biochemistry 2020; 59:2650-2659. [PMID: 32567840 DOI: 10.1021/acs.biochem.0c00299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The dynamic cytoskeletal network of microtubules and actin filaments can be disassembled by drugs. Cytoskeletal drugs work by perturbing the monomer-polymer equilibrium, thus changing the size and number of macromolecular crowders inside cells. Changes in both crowding and nonspecific surface interactions ("sticking") following cytoskeleton disassembly can affect the protein stability, structure, and function directly or indirectly by changing the fluidity of the cytoplasm and altering the crowding and sticking of other macromolecules in the cytoplasm. The effect of cytoskeleton disassembly on protein energy landscapes inside cells has yet to be observed. Here we have measured the effect of several cytoskeletal drugs on the folding energy landscape of two FRET-labeled proteins with different in vitro sensitivities to macromolecular crowding. Phosphoglycerate kinase (PGK) was previously shown to be more sensitive to crowding, whereas variable major protein-like sequence expressed (VlsE) was previously shown to be more sensitive to sticking. The in-cell effects of drugs that depolymerize either actin filaments (cytochalasin D and latrunculin B) or microtubules (nocodazole and vinblastine) were compared. The crowding sensor protein CrH2-FRET verified that cytoskeletal drugs decrease the extent of crowding inside cells despite also reducing the overall cell volume. The decreased compactness and folding stability of PGK could be explained by the decreased extent of crowding induced by these drugs. VlsE's opposite response to the drugs shows that depolymerization of the cytoskeleton also changes sticking in the cellular milieu. Our results demonstrate that perturbation of the monomer-polymer cytoskeletal equilibrium, for example, during natural cell migration or stresses from drug treatment, has off-target effects on the energy landscapes of proteins in the cell.
Collapse
|
18
|
Holehouse AS, Sukenik S. Controlling Structural Bias in Intrinsically Disordered Proteins Using Solution Space Scanning. J Chem Theory Comput 2020; 16:1794-1805. [DOI: 10.1021/acs.jctc.9b00604] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center for Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Shahar Sukenik
- Department of Chemistry and Chemical Biology, UC Merced, Merced, California 95340, United States
| |
Collapse
|
19
|
Abstract
Cells of the vast majority of organisms are subject to temperature, pressure, pH, ionic strength, and other stresses. We discuss these effects in the light of protein folding and protein interactions in vitro, in complex environments, in cells, and in vivo. Protein phase diagrams provide a way of organizing different structural ensembles that occur under stress and how one can move among ensembles. Experiments that perturb biomolecules in vitro or in cells by stressing them have revealed much about the underlying forces that are competing to control protein stability, folding, and function. Two phenomena that emerge and serve to broadly classify effects of the cellular environment are crowding (mainly due to repulsive forces) and sticking (mainly due to attractive forces). The interior of cells is closely balanced between these emergent effects, and stress can tip the balance one way or the other. The free energy scale involved is small but significant on the scale of the "on/off switches" that control signaling in cells or of protein-protein association with a favorable function such as increased enzyme processivity. Quantitative tools from biophysical chemistry will play an important role in elucidating the world of crowding and sticking under stress.
Collapse
Affiliation(s)
- Mayank Boob
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States
| | - Yuhan Wang
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States
| | - Martin Gruebele
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States
- Department of Chemistry, Department of Physics, Center for the Physics of Living Cells, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States
| |
Collapse
|
20
|
Rickard MM, Zhang Y, Gruebele M, Pogorelov TV. In-Cell Protein-Protein Contacts: Transient Interactions in the Crowd. J Phys Chem Lett 2019; 10:5667-5673. [PMID: 31483661 DOI: 10.1021/acs.jpclett.9b01556] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proteins in vivo are immersed in a crowded environment of water, ions, metabolites, and macromolecules. In-cell experiments highlight how transient weak protein-protein interactions promote (via functional "quinary structure") or hinder (via competitive binding or "sticking") complex formation. Computational models of the cytoplasm are expensive. We tackle this challenge with an all-atom model of a small volume of the E. coli cytoplasm to simulate protein-protein contacts up to the 5 μs time scale on the special-purpose supercomputer Anton 2. We use three CHARMM-derived force fields: C22*, C36m, and C36mCU (with CUFIX corrections). We find that both C36m and C36mCU form smaller contact surfaces than C22*. Although CUFIX was developed to reduce protein-protein sticking, larger contacts are observed with C36mCU than C36m. We show that the lifespan Δt of protein-protein contacts obeys a power law distribution between 0.03 and 3 μs, with ∼90% of all contacts lasting <1 μs (similar to the time scale for downhill folding).
Collapse
Affiliation(s)
- Meredith M Rickard
- Department of Chemistry , University of Illinois, Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Yi Zhang
- Center for Biophysics and Computational Biology , University of Illinois, Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Martin Gruebele
- Department of Chemistry , University of Illinois, Urbana-Champaign , Urbana , Illinois 61801 , United States
- Center for Biophysics and Computational Biology , University of Illinois, Urbana-Champaign , Urbana , Illinois 61801 , United States
- Department of Physics , University of Illinois, Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Taras V Pogorelov
- Department of Chemistry , University of Illinois, Urbana-Champaign , Urbana , Illinois 61801 , United States
- Center for Biophysics and Computational Biology , University of Illinois, Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
21
|
The Role of Water Homeostasis in Muscle Function and Frailty: A Review. Nutrients 2019; 11:nu11081857. [PMID: 31405072 PMCID: PMC6723611 DOI: 10.3390/nu11081857] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/31/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
Water, the main component of the body, is distributed in the extracellular and intracellular compartments. Water exchange between these compartments is mainly governed by osmotic pressure. Extracellular water osmolarity must remain within very narrow limits to be compatible with life. Older adults lose the thirst sensation and the ability to concentrate urine, and this favours increased extracellular osmolarity (hyperosmotic stress). This situation, in turn, leads to cell dehydration, which has severe consequences for the intracellular protein structure and function and, ultimately, results in cell damage. Moreover, the fact that water determines cell volume may act as a metabolic signal, with cell swelling acting as an anabolic signal and cell shrinkage acting as a catabolic signal. Ageing also leads to a progressive loss in muscle mass and strength. Muscle strength is the main determinant of functional capacity, and, in elderly people, depends more on muscle quality than on muscle quantity (or muscle mass). Intracellular water content in lean mass has been related to muscle strength, functional capacity, and frailty risk, and has been proposed as an indicator of muscle quality and cell hydration. This review aims to assess the role of hyperosmotic stress and cell dehydration on muscle function and frailty.
Collapse
|
22
|
Brylski O, Ebbinghaus S, Mueller JW. Melting Down Protein Stability: PAPS Synthase 2 in Patients and in a Cellular Environment. Front Mol Biosci 2019; 6:31. [PMID: 31131283 PMCID: PMC6509946 DOI: 10.3389/fmolb.2019.00031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2022] Open
Abstract
Within the crowded and complex environment of the cell, a protein experiences stabilizing excluded-volume effects and destabilizing quinary interactions with other proteins. Which of these prevail, needs to be determined on a case-by-case basis. PAPS synthases are dimeric and bifunctional enzymes, providing activated sulfate in the form of 3′-phosphoadenosine-5′-phosphosulfate (PAPS) for sulfation reactions. The human PAPS synthases PAPSS1 and PAPSS2 differ significantly in their protein stability as PAPSS2 is a naturally fragile protein. PAPS synthases bind a series of nucleotide ligands and some of them markedly stabilize these proteins. PAPS synthases are of biomedical relevance as destabilizing point mutations give rise to several pathologies. Genetic defects in PAPSS2 have been linked to bone and cartilage malformations as well as a steroid sulfation defect. All this makes PAPS synthases ideal to study protein unfolding, ligand binding, and the stabilizing and destabilizing factors in their cellular environment. This review provides an overview on current concepts of protein folding and stability and links this with our current understanding of the different disease mechanisms of PAPSS2-related pathologies with perspectives for future research and application.
Collapse
Affiliation(s)
- Oliver Brylski
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jonathan W Mueller
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| |
Collapse
|
23
|
A binding cooperativity switch driven by synergistic structural swelling of an osmo-regulatory protein pair. Nat Commun 2019; 10:1995. [PMID: 31040281 PMCID: PMC6491433 DOI: 10.1038/s41467-019-10002-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/12/2019] [Indexed: 02/07/2023] Open
Abstract
Uropathogenic E. coli experience a wide range of osmolarity conditions before and after successful infection. Stress-responsive regulatory proteins in bacteria, particularly proteins of the Hha family and H-NS, a transcription repressor, sense such osmolarity changes and regulate transcription through unknown mechanisms. Here we use an array of experimental probes complemented by molecular simulations to show that Cnu, a member of the Hha protein family, acts as an exquisite molecular sensor of solvent ionic strength. The osmosensory behavior of Cnu involves a fine-tuned modulation of disorder in the fourth helix and the three-dimensional structure in a graded manner. Order-disorder transitions in H-NS act synergistically with molecular swelling of Cnu contributing to a salt-driven switch in binding cooperativity. Thus, sensitivity to ambient conditions can be imprinted at the molecular level by tuning not just the degree of order in the protein conformational ensemble but also through population redistributions of higher-order molecular complexes. The bacterial protein Cnu together with the transcription repressor H-NS regulate expression of virulence factors in an osmo-sensitive manner. Here authors show that the structure of Cnu swells with decreasing ionic strength driving the oligomerization of H-NS and regulating osmo-sensory response.
Collapse
|