1
|
Zheng L, Zhou B, Wu B, Tan Y, Huang J, Tyagi M, García Sakai V, Yamada T, O'Neill H, Zhang Q, Hong L. Decoupling of the onset of anharmonicity between a protein and its surface water around 200 K. eLife 2024; 13:RP95665. [PMID: 39158544 PMCID: PMC11333040 DOI: 10.7554/elife.95665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
The protein dynamical transition at ~200 K, where the biomolecule transforms from a harmonic, non-functional form to an anharmonic, functional state, has been thought to be slaved to the thermal activation of dynamics in its surface hydration water. Here, by selectively probing the dynamics of protein and hydration water using elastic neutron scattering and isotopic labeling, we found that the onset of anharmonicity in the two components around 200 K is decoupled. The one in protein is an intrinsic transition, whose characteristic temperature is independent of the instrumental resolution time, but varies with the biomolecular structure and the amount of hydration, while the one of water is merely a resolution effect.
Collapse
Affiliation(s)
- Lirong Zheng
- Institute of Natural Sciences, Shanghai Jiao Tong UniversityShanghaiChina
| | - Bingxin Zhou
- Institute of Natural Sciences, Shanghai Jiao Tong UniversityShanghaiChina
- Shanghai National Center for Applied Mathematics (SJTU Center), Shanghai Jiao Tong UniversityShanghaiChina
| | - Banghao Wu
- Institute of Natural Sciences, Shanghai Jiao Tong UniversityShanghaiChina
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghaiChina
| | - Yang Tan
- Institute of Natural Sciences, Shanghai Jiao Tong UniversityShanghaiChina
- Shanghai National Center for Applied Mathematics (SJTU Center), Shanghai Jiao Tong UniversityShanghaiChina
| | - Juan Huang
- Institute of Natural Sciences, Shanghai Jiao Tong UniversityShanghaiChina
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghaiChina
| | - Madhusudan Tyagi
- Department of Materials Science and Engineering, University of MarylandCollege ParkUnited States
- NIST Center for Neutron Research, National Institute of Standards and Technology (NIST)GaithersburgUnited States
| | - Victoria García Sakai
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Science & Technology Facilities CouncilDidcotUnited Kingdom
| | - Takeshi Yamada
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and SocietyIbarakiJapan
| | - Hugh O'Neill
- Biology and Soft Matter Division, Oak Ridge National LaboratoryOak RidgeUnited States
| | - Qiu Zhang
- Biology and Soft Matter Division, Oak Ridge National LaboratoryOak RidgeUnited States
| | - Liang Hong
- Institute of Natural Sciences, Shanghai Jiao Tong UniversityShanghaiChina
- Shanghai National Center for Applied Mathematics (SJTU Center), Shanghai Jiao Tong UniversityShanghaiChina
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong UniveristyShanghaiChina
- Shanghai Artificial Intelligence LaboratoryShanghaiChina
| |
Collapse
|
2
|
Bassotti E, Gabrielli S, Paradossi G, Chiessi E, Telling M. An experimentally representative in-silico protocol for dynamical studies of lyophilised and weakly hydrated amorphous proteins. Commun Chem 2024; 7:83. [PMID: 38609466 PMCID: PMC11014950 DOI: 10.1038/s42004-024-01167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Characterization of biopolymers in both dry and weakly hydrated amorphous states has implications for the pharmaceutical industry since it provides understanding of the effect of lyophilisation on stability and biological activity. Atomistic Molecular Dynamics (MD) simulations probe structural and dynamical features related to system functionality. However, while simulations in homogenous aqueous environments are routine, dehydrated model assemblies are a challenge with systems investigated in-silico needing careful consideration; simulated systems potentially differing markedly despite seemingly negligible changes in procedure. Here we propose an in-silico protocol to model proteins in lyophilised and weakly hydrated amorphous states that is both more experimentally representative and routinely applicable. Since the outputs from MD align directly with those accessed by neutron scattering, the efficacy of the simulation protocol proposed is shown by validating against experimental neutron data for apoferritin and insulin. This work also highlights that without cooperative experimental and simulative data, development of simulative procedures using MD alone would prove most challenging.
Collapse
Affiliation(s)
- Elisa Bassotti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica I, 00133, Rome, Italy
| | - Sara Gabrielli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica I, 00133, Rome, Italy
| | - Gaio Paradossi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica I, 00133, Rome, Italy
| | - Ester Chiessi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica I, 00133, Rome, Italy.
| | - Mark Telling
- STFC, ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11OQX, UK.
- Department of Materials, University of Oxford, Parks Road, Oxford, UK.
| |
Collapse
|
3
|
Ye Y, Zheng L, Hong L, García Sakai V, de Souza NR, Teng D, Wu B, Xu Y, Cai J, Liu Z. Direct Observation of the Mutual Coupling Effect in the Protein-Water-Glycerol Mixture by Combining Neutron Scattering and Selective Deuteration. J Phys Chem B 2024; 128:405-414. [PMID: 38183282 DOI: 10.1021/acs.jpcb.3c05135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
Numerous studies have discussed the impact of cosolvents on the structure, dynamics, and stability of proteins in aqueous solutions. However, the dynamics of cosolvents in the protein-water-cosolvent ternary system is largely unexplored in experiments due to technical difficulty. Consequently, a comprehensive understanding of the interplay among proteins, water, and cosolvents is still lacking. Here, we employed selective deuteration and neutron scattering techniques to characterize the individual motions of each component in the protein/water/glycerol (GLY) mixture across various temperatures. The consistent dynamic onset temperatures and the correlation between the MSD of the protein and the viscosity of solvents revealed the mutual coupling effects among the three components. Furthermore, our experimental and simulation results showed that the hydrogen bond relaxation energy barrier in the ternary system is ∼43 kJ/mol, whereas in the protein-water binary system it is merely ∼35 kJ/mol. Therefore, we suggest that GLY can enhance hydrogen bond interactions in the ternary system through the mutual coupling effect, thereby serving as one of the protective mechanisms of protein preservation by GLY.
Collapse
Affiliation(s)
- Yongfeng Ye
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lirong Zheng
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Hong
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai National Centre for Applied Mathematics (SJTU Center), MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
| | - Victoria García Sakai
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Science & Technology Facilities Council, Didcot OX11 0QX, U.K
| | - Nicolas R de Souza
- Australian Nuclear Science and Technology (ANSTO), Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Dahong Teng
- Organ Transplantation Center, Fujian Medical University Union Hospital, Fuzhou 350000, China
| | - Bin Wu
- Organ Transplantation Center, Fujian Medical University Union Hospital, Fuzhou 350000, China
| | - Yichao Xu
- Organ Transplantation Center, Fujian Medical University Union Hospital, Fuzhou 350000, China
| | - Jinzhen Cai
- Organ Transplantation Center, Fujian Medical University Union Hospital, Fuzhou 350000, China
| | - Zhuo Liu
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai National Centre for Applied Mathematics (SJTU Center), MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
| |
Collapse
|
4
|
Zheng L, Liu Z, Zhang Q, Li S, Huang J, Zhang L, Zan B, Tyagi M, Cheng H, Zuo T, Sakai VG, Yamada T, Yang C, Tan P, Jiang F, Chen H, Zhuang W, Hong L. Universal dynamical onset in water at distinct material interfaces. Chem Sci 2022; 13:4341-4351. [PMID: 35509458 PMCID: PMC9006901 DOI: 10.1039/d1sc04650k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 03/18/2022] [Indexed: 12/13/2022] Open
Abstract
Interfacial water remains liquid and mobile much below 0 °C, imparting flexibility to the encapsulated materials to ensure their diverse functions at subzero temperatures. However, a united picture that can describe the dynamical differences of interfacial water on different materials and its role in imparting system-specific flexibility to distinct materials is lacking. By combining neutron spectroscopy and isotope labeling, we explored the dynamics of water and the underlying substrates independently below 0 °C across a broad range of materials. Surprisingly, while the function-related anharmonic dynamical onset in the materials exhibits diverse activation temperatures, the surface water presents a universal onset at a common temperature. Further analysis of the neutron experiment and simulation results revealed that the universal onset of water results from an intrinsic surface-independent relaxation: switching of hydrogen bonds between neighboring water molecules with a common energy barrier of ∼35 kJ mol−1. We demonstrated that the dynamical onset of interfacial water is an intrinsic property of water itself, resulting from a surface independent relaxation process in water with an approximately universal energy barrier of ∼35 kJ mol−1.![]()
Collapse
Affiliation(s)
- Lirong Zheng
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center), MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35000, China
| | - Zhuo Liu
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center), MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Zhang
- College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028043, China
| | - Song Li
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center), MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juan Huang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bing Zan
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center), MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Madhusudan Tyagi
- NIST Center for Neutron Research, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, USA
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - He Cheng
- China Spallation Neutron Source (CSNS), Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Dongguan 523803, China
- Dongguan Institute of Neutron Science (DINS), Dongguan 523808, China
| | - Taisen Zuo
- China Spallation Neutron Source (CSNS), Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Dongguan 523803, China
- Dongguan Institute of Neutron Science (DINS), Dongguan 523808, China
| | - Victoria García Sakai
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Science & Technology Facilities Council, Didcot OX11 0QX, UK
| | - Takeshi Yamada
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
| | - Chenxing Yang
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center), MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pan Tan
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center), MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Jiang
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center), MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35000, China
| | - Wei Zhuang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35000, China
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Liang Hong
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center), MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
| |
Collapse
|
5
|
Li R, Liu Z, Li L, Huang J, Yamada T, Sakai VG, Tan P, Hong L. Anomalous sub-diffusion of water in biosystems: From hydrated protein powders to concentrated protein solution to living cells. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:054703. [PMID: 33094127 PMCID: PMC7556885 DOI: 10.1063/4.0000036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Water is essential to life and its translational motion in living systems mediates various biological processes, including transportation of function-required ingredients and facilitating the interaction between biomacromolecules. By combining neutron scattering and isotopic labeling, the present work characterizes translational motion of water on a biomolecular surface, in a range of systems: a hydrated protein powder, a concentrated protein solution, and in living Escherichia coli (E. coli) cells. Anomalous sub-diffusion of water is observed in all samples, which is alleviated upon increasing the water content. Complementary molecular dynamics simulations and coarse-grained numerical modeling demonstrated that the sub-diffusive behavior results from the heterogeneous distribution of microscopic translational mobility of interfacial water. Moreover, by comparing the experimental results measured on E. coli cells with those from a concentrated protein solution with the same amount of water, we show that water in the two samples has a similar average mobility, however the underlying distribution of motion is more heterogeneous in the living cell.
Collapse
Affiliation(s)
| | | | - Like Li
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juan Huang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Takeshi Yamada
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Ibaraki 319-1106, Japan
| | - Victoria García Sakai
- ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom
| | - Pan Tan
- Authors to whom correspondence should be addressed: and
| | - Liang Hong
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
6
|
Combining Neutron Scattering, Deuteration Technique, and Molecular Dynamics Simulations to Study Dynamics of Protein and Its Surface Water Molecules. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2312-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|