1
|
Dıblan S, Kaya S. Shelf life modelling of kaşar cheese packaged with potassium sorbate, nisin, silver substituted zeolite, or chitosan incorporated active multilayer plastic films. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
2
|
Paluch E, Sobierajska P, Okińczyc P, Widelski J, Duda-Madej A, Krzyżanowska B, Krzyżek P, Ogórek R, Szperlik J, Chmielowiec J, Gościniak G, Wiglusz RJ. Nanoapatites Doped and Co-Doped with Noble Metal Ions as Modern Antibiofilm Materials for Biomedical Applications against Drug-Resistant Clinical Strains of Enterococcus faecalis VRE and Staphylococcus aureus MRSA. Int J Mol Sci 2022; 23:1533. [PMID: 35163457 PMCID: PMC8836119 DOI: 10.3390/ijms23031533] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
The main aim of our research was to investigate antiadhesive and antibiofilm properties of nanocrystalline apatites doped and co-doped with noble metal ions (Ag+, Au+, and Pd2+) against selected drug-resistant strains of Enterococcus faecalis and Staphylococcus aureus. The materials with the structure of apatite (hydroxyapatite, nHAp; hydroxy-chlor-apatites, OH-Cl-Ap) containing 1 mol% and 2 mol% of dopants and co-dopants were successfully obtained by the wet chemistry method. The majority of them contained an additional phase of metallic nanoparticles, in particular, AuNPs and PdNPs, which was confirmed by the XRPD, FTIR, UV-Vis, and SEM-EDS techniques. Extensive microbiological tests of the nanoapatites were carried out determining their MIC, MBC value, and FICI. The antiadhesive and antibiofilm properties of the tested nanoapatites were determined in detail with the use of fluorescence microscopy and computer image analysis. The results showed that almost all tested nanoapatites strongly inhibit adhesion and biofilm production of the tested bacterial strains. Biomaterials have not shown any significant cytotoxic effect on fibroblasts and even increased their survival when co-incubated with bacterial biofilms. Performed analyses confirmed that the nanoapatites doped and co-doped with noble metal ions are safe and excellent antiadhesive and antibiofilm biomaterials with potential use in the future in medical sectors.
Collapse
Affiliation(s)
- Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland; (A.D.-M.); (B.K.); (P.K.); (G.G.)
| | - Paulina Sobierajska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (P.S.); (J.C.)
| | - Piotr Okińczyc
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Jarosław Widelski
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland; (A.D.-M.); (B.K.); (P.K.); (G.G.)
| | - Barbara Krzyżanowska
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland; (A.D.-M.); (B.K.); (P.K.); (G.G.)
| | - Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland; (A.D.-M.); (B.K.); (P.K.); (G.G.)
| | - Rafał Ogórek
- Department of Mycology and Genetics, University of Wroclaw, Przybyszewskiego 63, 51-148 Wroclaw, Poland;
| | - Jakub Szperlik
- Faculty of Biological Sciences, Botanical Garden, University of Wroclaw, Sienkiewicza 23, 50-525 Wroclaw, Poland;
| | - Jacek Chmielowiec
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (P.S.); (J.C.)
| | - Grażyna Gościniak
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland; (A.D.-M.); (B.K.); (P.K.); (G.G.)
| | - Rafal J. Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (P.S.); (J.C.)
| |
Collapse
|
3
|
He J, Kumar A, Khan M, Lo IMC. Critical review of photocatalytic disinfection of bacteria: from noble metals- and carbon nanomaterials-TiO 2 composites to challenges of water characteristics and strategic solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143953. [PMID: 33321366 DOI: 10.1016/j.scitotenv.2020.143953] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
This critical review covers ways to improve TiO2-based photocatalysts, how water characteristics may affect photocatalytic disinfection, and strategies to tackle the challenges arising from water characteristics. Photocatalysis has shown much promise in the disinfection of water/wastewater, because photocatalysis does not produce toxic by-products, and is driven by green solar energy. There are however several drawbacks that are curbing the prevalence of photocatalytic disinfection applications: one, the efficiency of photocatalysts may limit popular utilization; two, the water characteristics may present some challenges to the process. TiO2-based photocatalysts may be readily improved if composited with noble metals or carbon nanomaterials. Noble metals give TiO2-based composites a higher affinity for dissolved oxygen, and induce plasmonic and Schottky effects in the TiO2; carbon nanomaterials with a tunable structure, on the other hand, give the composites an improved charge carrier separation performance. Other than photocatalyst materials, the characteristics of water/wastewater is another crucial factor in the photocatalysis process. Also examined in this review are the crucial impacts that water characteristics have on photocatalysts and their interaction with bacteria. Accordingly, strategies to address the challenge of water characteristics on photocatalytic disinfection are explored: one, to modify the semiconductor conduction band to generate long-lifetime reactive species; two, to improve the interaction between bacteria and photocatalysts.
Collapse
Affiliation(s)
- Juhua He
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ashutosh Kumar
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Musharib Khan
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Irene M C Lo
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
4
|
Jabbarzadeh M, Fu HC. Large deformations of the hook affect free-swimming singly flagellated bacteria during flick motility. Phys Rev E 2020; 102:033115. [PMID: 33076012 DOI: 10.1103/physreve.102.033115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/11/2020] [Indexed: 11/07/2022]
Abstract
Hook dynamics are important in the motility of singly flagellated bacteria during flick motility. Although the hook is relatively short, during reorientation events it may undergo large deformations, leading to nonlinear behavior. Here, we explore when these nonlinear and large deformations are important for the swimming dynamics in different ranges of hook flexibilities and flagellar motor torques. For this purpose, we investigate progressively more faithful models for the hook, starting with linear springs, then models that incorporate nonlinearities due to larger hook deformations. We also employ these models both with and without hydrodynamic interactions between the flagellum and cell body to test the importance of those hydrodynamic interactions. We show that for stiff hooks, bacteria swim with a flagellum rotating on-axis in orbits and hydrodynamic interactions between the cell body and flagellum change swimming speeds by about 40%. As the hook stiffness decreases, there is a critical hook stiffness that predicts the initiation of the dynamic instability causing flicks. We compare the transition value of stiffnesses predicted by our models to experiments and show that nonlinearity and large deflections do not significantly affect critical transition values, while hydrodynamic interactions can change transition values by up to 13%. Below the transition value, we observe precession of the flagellum, in which it deflects off-axis to undergo nearly circular stable trajectories. However, only slightly below the transition stiffness, nonlinearity in hook response destabilizes precession, leading to unstable deflections of the flagellum. We conclude that while the linear hook response can qualitatively predict transition stiffnesses, nonlinear models are necessary to capture the behavior of hooks for stiffnesses below transition. Furthermore, we show that for the lower range of hook stiffnesses observed in actual bacteria, models which capture the full deformations of hooks are necessary. Inclusion of the hydrodynamic interactions of the cell body, hook, and flagellum is required to quantitatively simulate nonlinear dynamics of soft hooks during flick motility.
Collapse
Affiliation(s)
- Mehdi Jabbarzadeh
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Henry Chien Fu
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
5
|
Absalan Y, Gholizadeh M, Butusov L, Bratchikova I, Kopylov V, Kovalchukova O. Titania nanotubes (TNTs) prepared through the complex compound of gallic acid with titanium; examining photocatalytic degradation of the obtained TNTs. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
6
|
WITHDRAWN: Titania nanotubes (TNTs) prepared through the complex compound of gallic acid with titanium; examining photocatalytic degradation of the obtained TNTs. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Salari H. Facile template-free synthesis of 3D flower-like Bi2WO6/MoO3 nanocomposites with ultra-thin sheets and their associated photocatalytic properties under visible light irradiation. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.112069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Elahifard MR, Behjatmanesh-Ardakani R, Ahmadvand S, Abbasi B, Abbasi B. A mechanistic study of photo-oxidation of phenol and AB92 by AgBr/TiO2. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03867-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
Looking Beyond Energy Efficiency: An Applied Review of Water Desalination Technologies and an Introduction to Capillary-Driven Desalination. WATER 2019. [DOI: 10.3390/w11040696] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most notable emerging water desalination technologies and related publications, as examined by the authors, investigate opportunities to increase energy efficiency of the process. In this paper, the authors reason that improving energy efficiency is only one route to produce more cost-effective potable water with fewer emissions. In fact, the grade of energy that is used to desalinate water plays an equally important role in its economic viability and overall emission reduction. This paper provides a critical review of desalination strategies with emphasis on means of using low-grade energy rather than solely focusing on reaching the thermodynamic energy limit. Herein, it is argued that large-scale commercial desalination technologies have by-and-large reached their engineering potential. They are now mostly limited by the fundamental process design rather than process optimization, which has very limited room for improvement without foundational change to the process itself. The conventional approach toward more energy efficient water desalination is to shift from thermal technologies to reverse osmosis (RO). However, RO suffers from three fundamental issues: (1) it is very sensitive to high-salinity water, (2) it is not suitable for zero liquid discharge and is therefore environmentally challenging, and (3) it is not compatible with low-grade energy. From extensive research and review of existing commercial and lab-scale technologies, the authors propose that a fundamental shift is needed to make water desalination more affordable and economical. Future directions may include novel ideas such as taking advantage of energy localization, surficial/interfacial evaporation, and capillary action. Here, some emerging technologies are discussed along with the viability of incorporating low-grade energy and its economic consequences. Finally, a new process is discussed and characterized for water desalination driven by capillary action. The latter has great significance for using low-grade energy and its substantial potential to generate salinity/blue energy.
Collapse
|