1
|
Buyukdagli S. Self-consistent electrostatic formalism of bulk electrolytes based on the asymmetric treatment of the short- and long-range ion interactions. SOFT MATTER 2024; 20:9104-9116. [PMID: 39530605 DOI: 10.1039/d4sm01174k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
We predict the thermodynamic behavior of bulk electrolytes from an ionic hard-core (HC) size-augmented self-consistent formalism incorporating asymmetrically the short- and long-range ion interactions via their virial and cumulant treatment, respectively. The characteristic splitting length separating these two ranges is obtained from a variational equation solved together with the Schwinger-Dyson (SD) equations. Via comparison with simulation results from the literature, we show that the asymmetric treatment of the distinct interaction ranges significantly extends the validity regime of our previously developed purely cumulant-level Debye-Hückel (DH) theory. Namely, for monovalent solutions with typical ion sizes, the present formalism can accurately predict up to molar concentrations the liquid pressure dominated by HC interactions, the internal energies driven by charge correlations, and the local ion distributions governed by the competition between HC and electrostatic interactions. We evaluate as well the screening length of the liquid and investigate the deviations of the macromolecular interaction range from the DH length. In fair agreement with simulations and experiments, our theory is shown to reproduce the overscreening and underscreening effects occurring respectively in submolar mono- and multivalent electrolytes.
Collapse
Affiliation(s)
- Sahin Buyukdagli
- Department of Physics, Bilkent University, Ankara 06800, Turkey.
| |
Collapse
|
2
|
Yu Z, Mao J, Li Q, Hu Y, Tan Z, Xue F, Zhang Y, Zhu H, Wang C, He H. A Transpiration-Driven Electrokinetic Power Generator with a Salt Pathway for Extended Service Life in Saltwater. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5183-5194. [PMID: 38436245 DOI: 10.1021/acs.langmuir.3c03390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
To ensure prolonged functionality of transpiration-driven electrokinetic power generators (TEPGs) in saltwater environments, it is imperative to mitigate salt accumulation. This study presents a salt pathway transpiration-driven electrokinetic power generator (SPTEPG), incorporating MXene, graphene oxide (GO), and carbon nanotubes (CNTs) as active materials, along with cellulose nanofibers (CNF) and poly(vinyl alcohol) (PVA) as aqueous binders and nonwoven fabrics. This unique combination confers exceptional hydrophilicity and enhances the energy generation performance. When tested with deionized water, the SPTEPG achieved a maximum voltage of 0.6 V and a current of 4.2 μA. In simulated seawater conditions, the presence of conductive ions in the solution boosted these values to 0.64 V and 42 μA. The incorporation of the salt pathway mechanism facilitates the return of excess salt deposits to the bulk solution, thus extending the SPTEPG's service life in saltwater environments. This research offers a straightforward yet effective strategy for designing transpiration-driven power generators suitable for saline water applications.
Collapse
Affiliation(s)
- Zihan Yu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jun Mao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Qiong Li
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yuanyuan Hu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhanlong Tan
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Fei Xue
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yonglian Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Hongxiang Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Chunfang Wang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Hui He
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Zhang Y, Huang R, Iepure M, Merriman S, Min Y. Geocolloidal interactions and relaxation dynamics under nanoconfinement: Effects of salinity and particle concentration. J Colloid Interface Sci 2023; 656:200-213. [PMID: 37989053 DOI: 10.1016/j.jcis.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023]
Abstract
HYPOTHESIS Energy-related contaminants are frequently associated with geocolloids that translocate in underground fissures with dimensions comparable with geocolloids. To assess the transport and impact of energy-related contaminants in geological systems, fundamental understandings of interfacial behaviors of nanoparticles under confinement is imperative. We hypothesize that the dynamic properties of geocolloids, as well as their dependence on aqueous medium conditions would deviate from bulk behaviors under nanoconfinement. EXPERIMENTS Force profiles and rheological properties of 50 nm silica nanoparticles in aqueous media confined between mica surfaces as a function of surface separation, particle concentrations, and salinity were measured utilizing the surface forces apparatus. FINDINGS Force profiles revealed the critical surface separation for nonlinear rheological behaviors coincides with the onset of exponential repulsion between mica surfaces. When salts were absent, the normal forces and viscosity values of colloidal suspensions resembled pure water. In contrast, with salts, the force profiles and corresponding critical length scales were found to be highly sensitive to the particle concentration and the degree of confinement. A Newtonian to shear-thinning transition was captured with increasing degrees of confinement. Our results show that the interplay among confinement, particle, and ionic concentrations can alter the interparticle forces and rheological responses of true nanosized-colloidal suspensions and thus their transport behaviors under nanoconfinement for the first time.
Collapse
Affiliation(s)
- Yuanzhong Zhang
- Department of Chemical and Environmental Engineering, University of California, Riverside 92521 CA, USA
| | - Rundong Huang
- Department of Chemical and Environmental Engineering, University of California, Riverside 92521 CA, USA
| | - Monica Iepure
- Department of Chemical and Environmental Engineering, University of California, Riverside 92521 CA, USA
| | - Stephen Merriman
- School of Polymer Science and Polymer Engineering, University of Akron, 44325 OH, USA
| | - Younjin Min
- Department of Chemical and Environmental Engineering, University of California, Riverside 92521 CA, USA; Material Science and Engineering Program, University of California, Riverside, 92521 CA, USA.
| |
Collapse
|
4
|
Robertson H, Elliott GR, Nelson ARJ, Le Brun AP, Webber GB, Prescott SW, Craig VSJ, Wanless EJ, Willott JD. Underscreening in concentrated electrolytes: re-entrant swelling in polyelectrolyte brushes. Phys Chem Chem Phys 2023; 25:24770-24782. [PMID: 37671535 DOI: 10.1039/d3cp02206d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Hypersaline environments are ubiquitous in nature and are found in myriad technological processes. Recent empirical studies have revealed a significant discrepancy between predicted and observed screening lengths at high salt concentrations, a phenomenon referred to as underscreening. Herein we investigate underscreening using a cationic polyelectrolyte brush as an exemplar. Poly(2-(methacryloyloxy)ethyl)trimethylammonium (PMETAC) brushes were synthesised and their internal structural changes and swelling response was monitored with neutron reflectometry and spectroscopic ellipsometry. Both techniques revealed a monotonic brush collapse as the concentration of symmetric monovalent electrolyte increased. However, a non-monotonic change in brush thickness was observed in all multivalent electrolytes at higher concentrations, known as re-entrant swelling; indicative of underscreening. For all electrolytes, numerical self-consistent field theory predictions align with experimental studies in the low-to-moderate salt concentration regions. Analysis suggests that the classical theory of electrolytes is insufficient to describe the screening lengths observed at high salt concentrations and that the re-entrant polyelectrolyte brush swelling seen herein is consistent with the so-called regular underscreening phenomenon.
Collapse
Affiliation(s)
- Hayden Robertson
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Gareth R Elliott
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Andrew R J Nelson
- Australian Centre for Neutron Scattering, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Grant B Webber
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Stuart W Prescott
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Vincent S J Craig
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 0200, Australia
| | - Erica J Wanless
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Joshua D Willott
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
5
|
Härtel A, Bültmann M, Coupette F. Anomalous Underscreening in the Restricted Primitive Model. PHYSICAL REVIEW LETTERS 2023; 130:108202. [PMID: 36962045 DOI: 10.1103/physrevlett.130.108202] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/19/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Underscreening is a collective term for charge correlations in electrolytes decaying slower than the Debye length. Anomalous underscreening refers to phenomenology that cannot be attributed alone to steric interactions. Experiments with concentrated electrolytes and ionic fluids report anomalous underscreening, which so far has not been observed in simulation. We present Molecular Dynamics simulation results exhibiting anomalous underscreening that can be connected to cluster formation. A theory that accounts for ion pairing confirms the trend. Our results challenge the classic understanding of dense electrolytes impacting the design of technologies for energy storage and conversion.
Collapse
Affiliation(s)
- Andreas Härtel
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Moritz Bültmann
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Fabian Coupette
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| |
Collapse
|
6
|
Kumar S, Cats P, Alotaibi MB, Ayirala SC, Yousef AA, van Roij R, Siretanu I, Mugele F. Absence of anomalous underscreening in highly concentrated aqueous electrolytes confined between smooth silica surfaces. J Colloid Interface Sci 2022; 622:819-827. [PMID: 35561602 DOI: 10.1016/j.jcis.2022.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/08/2022] [Accepted: 05/01/2022] [Indexed: 10/18/2022]
Abstract
Recent surface forces apparatus experiments that measured the forces between two mica surfaces and a series of subsequent theoretical studies suggest the occurrence of universal underscreening in highly concentrated electrolyte solutions. We performed a set of systematic Atomic Force Spectroscopy measurements for aqueous salt solutions in a concentration range from 1 mM to 5 M using chloride salts of various alkali metals as well as mixed concentrated salt solutions (involving both mono- and divalent cations and anions), that mimic concentrated brines typically encountered in geological formations. Experiments were carried out using flat substrates and submicrometer-sized colloidal probes made of smooth oxidized silicon immersed in salt solutions at pH values of 6 and 9 and temperatures of 25 °C and 45 °C. While strong repulsive forces were observed for the smallest tip-sample separations, none of the conditions explored displayed any indication of anomalous long range electrostatic forces as reported for mica surfaces. Instead, forces are universally dominated by attractive van der Waals interactions at tip-sample separations of ≈2 nm and beyond for salt concentrations of 1 M and higher. Complementary calculations based on classical density functional theory for the primitive model support these experimental observations and display a consistent decrease in screening length with increasing ion concentration.
Collapse
Affiliation(s)
- Saravana Kumar
- Physics of Complex Fluids Group and MESA+ Institute, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, the Netherlands
| | - Peter Cats
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht, the Netherlands
| | - Mohammed B Alotaibi
- The Exploration and Petroleum Engineering Center - Advanced Research Center (EXPEC ARC), Saudi Aramco, Dhahran 34465, Saudi Arabia
| | - Subhash C Ayirala
- The Exploration and Petroleum Engineering Center - Advanced Research Center (EXPEC ARC), Saudi Aramco, Dhahran 34465, Saudi Arabia
| | - Ali A Yousef
- The Exploration and Petroleum Engineering Center - Advanced Research Center (EXPEC ARC), Saudi Aramco, Dhahran 34465, Saudi Arabia
| | - René van Roij
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht, the Netherlands
| | - Igor Siretanu
- Physics of Complex Fluids Group and MESA+ Institute, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, the Netherlands
| | - Frieder Mugele
- Physics of Complex Fluids Group and MESA+ Institute, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, the Netherlands
| |
Collapse
|
7
|
On the analogy between the restricted primitive model and capacitor circuits. Part II: A generalized Gibbs-Duhem consistent extension of the Pitzer-Debye-Hückel term with corrections for low and variable relative permittivity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
He Q, Chen J, Gan L, Gao M, Zan M, Xiao Y. Insight into leaching of rare earth and aluminum from ion adsorption type rare earth ore: Adsorption and desorption. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Yuan H, Deng W, Zhu X, Liu G, Craig VSJ. Colloidal Systems in Concentrated Electrolyte Solutions Exhibit Re-entrant Long-Range Electrostatic Interactions due to Underscreening. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6164-6173. [PMID: 35512818 PMCID: PMC9119301 DOI: 10.1021/acs.langmuir.2c00519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/26/2022] [Indexed: 05/07/2023]
Abstract
Surface force measurements have revealed that at very high electrolyte concentrations as well as in neat and diluted ionic liquids and deep eutectic solvents, the range of electrostatic interactions is far greater than the Debye length. Here, we explore the consequences of this underscreening for soft-matter and colloidal systems by investigating the stability of nanoparticle dispersions, the self-assembly of ionic surfactants, and the thickness of soap films. In each case, we find clear evidence of re-entrant properties due to underscreening at high salt concentrations. Our results show that underscreening in concentrated electrolytes is a general phenomenon and is not dependent on confinement by macroscopic surfaces. The stability of systems at very high salinity due to underscreening may be beneficially applied to processes that currently use low-salinity water.
Collapse
Affiliation(s)
- Haiyang Yuan
- Department
of Chemical Physics, Key Laboratory of Surface and Interface Chemistry
and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wenjie Deng
- Department
of Chemical Physics, Key Laboratory of Surface and Interface Chemistry
and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiaolong Zhu
- State
Key Laboratory of Fire Science, University
of Science and Technology of China, Hefei 230026, P. R. China
| | - Guangming Liu
- Department
of Chemical Physics, Key Laboratory of Surface and Interface Chemistry
and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Vincent Stuart James Craig
- Department
of Chemical Physics, Key Laboratory of Surface and Interface Chemistry
and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, P. R. China
- Department
of Applied Mathematics, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
10
|
Chen Y, Atwi R, Han KS, Ryu J, Washton NM, Hu JZ, Rajput NN, Mueller KT, Murugesan V. Role of a Multivalent Ion-Solvent Interaction on Restricted Mg 2+ Diffusion in Dimethoxyethane Electrolytes. J Phys Chem B 2021; 125:12574-12583. [PMID: 34748339 DOI: 10.1021/acs.jpcb.1c08729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The diffusion behavior of Mg2+ in electrolytes is not as readily accessible as that from Li+ or Na+ utilizing PFG NMR, due to the low sensitivity, poor resolution, and rapid relaxation encountered when attempting 25Mg NMR. In MgTFSI2/DME solutions, "bound" DME (coordinating to Mg2+) and "free" DME (bulk) are distinguishable from 1H NMR. With the exchange rates between them obtained from 2D 1H EXSY NMR, we can extract the self-diffusivities of free DME and bound DME (which are equal to that of Mg2+) before the exchange occurs using PFG diffusion NMR measurements coupled with analytical formulas describing diffusion under two-site exchange. The high activation enthalpy for exhange (65-70 kJ/mol) can be explained by the structural change of bound DME as evidenced by its reduced C-H bond length. Comparison of the diffusion behaviors of Mg2+, TFSI-, DME, and Li+ reveals a relative restriction to Mg2+ diffusion that is caused by the long-range interaction between Mg2+ and solvent molecules, especially those with suppressed motions at high concentrations and low temperatures.
Collapse
Affiliation(s)
- Ying Chen
- The Joint Center for Energy Storage Research (JCESR), Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Rasha Atwi
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Kee Sung Han
- The Joint Center for Energy Storage Research (JCESR), Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jaegeon Ryu
- The Joint Center for Energy Storage Research (JCESR), Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Nancy M Washton
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jian Zhi Hu
- The Joint Center for Energy Storage Research (JCESR), Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Nav Nidhi Rajput
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Karl T Mueller
- The Joint Center for Energy Storage Research (JCESR), Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Vijayakumar Murugesan
- The Joint Center for Energy Storage Research (JCESR), Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
11
|
Drews J, Jankowski P, Häcker J, Li Z, Danner T, García Lastra JM, Vegge T, Wagner N, Friedrich KA, Zhao‐Karger Z, Fichtner M, Latz A. Modeling of Electron-Transfer Kinetics in Magnesium Electrolytes: Influence of the Solvent on the Battery Performance. CHEMSUSCHEM 2021; 14:4820-4835. [PMID: 34459116 PMCID: PMC8597058 DOI: 10.1002/cssc.202101498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/27/2021] [Indexed: 05/15/2023]
Abstract
The performance of rechargeable magnesium batteries is strongly dependent on the choice of electrolyte. The desolvation of multivalent cations usually goes along with high energy barriers, which can have a crucial impact on the plating reaction. This can lead to significantly higher overpotentials for magnesium deposition compared to magnesium dissolution. In this work we combine experimental measurements with DFT calculations and continuum modelling to analyze Mg deposition in various solvents. Jointly, these methods provide a better understanding of the electrode reactions and especially the magnesium deposition mechanism. Thereby, a kinetic model for electrochemical reactions at metal electrodes is developed, which explicitly couples desolvation to electron transfer and, furthermore, qualitatively takes into account effects of the electrochemical double layer. The influence of different solvents on the battery performance is studied for the state-of-the-art magnesium tetrakis(hexafluoroisopropyloxy)borate electrolyte salt. It becomes apparent that not necessarily a whole solvent molecule must be stripped from the solvated magnesium cation before the first reduction step can take place. For Mg reduction it seems to be sufficient to have one coordination site available, so that the magnesium cation is able to get closer to the electrode surface. Thereby, the initial desolvation of the magnesium cation determines the deposition reaction for mono-, tri- and tetraglyme, whereas the influence of the desolvation on the plating reaction is minor for diglyme and tetrahydrofuran. Overall, we can give a clear recommendation for diglyme to be applied as solvent in magnesium electrolytes.
Collapse
Affiliation(s)
- Janina Drews
- Institute of Engineering Thermodynamics, German Aerospace Center (DLR)Pfaffenwaldring 38–4070569StuttgartGermany
- Helmholtz Institute Ulm (HIU)Helmholtzstr.1189081UlmGermany
| | - Piotr Jankowski
- Department of Energy Conversion and StorageTechnical University of Denmark (DTU)Anker Engelunds Vej2800Kgs. LyngbyDenmark
- Faculty of ChemistryWarsaw University of Technology (WUT)Noakowskiego 300661WarsawPoland
| | - Joachim Häcker
- Institute of Engineering Thermodynamics, German Aerospace Center (DLR)Pfaffenwaldring 38–4070569StuttgartGermany
| | - Zhenyou Li
- Helmholtz Institute Ulm (HIU)Helmholtzstr.1189081UlmGermany
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Timo Danner
- Institute of Engineering Thermodynamics, German Aerospace Center (DLR)Pfaffenwaldring 38–4070569StuttgartGermany
- Helmholtz Institute Ulm (HIU)Helmholtzstr.1189081UlmGermany
| | - Juan Maria García Lastra
- Department of Energy Conversion and StorageTechnical University of Denmark (DTU)Anker Engelunds Vej2800Kgs. LyngbyDenmark
| | - Tejs Vegge
- Department of Energy Conversion and StorageTechnical University of Denmark (DTU)Anker Engelunds Vej2800Kgs. LyngbyDenmark
| | - Norbert Wagner
- Institute of Engineering Thermodynamics, German Aerospace Center (DLR)Pfaffenwaldring 38–4070569StuttgartGermany
| | - K. Andreas Friedrich
- Institute of Engineering Thermodynamics, German Aerospace Center (DLR)Pfaffenwaldring 38–4070569StuttgartGermany
- Institute of Energy StorageUniversity of StuttgartPfaffenwaldring 3170569StuttgartGermany
| | - Zhirong Zhao‐Karger
- Helmholtz Institute Ulm (HIU)Helmholtzstr.1189081UlmGermany
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Maximilian Fichtner
- Helmholtz Institute Ulm (HIU)Helmholtzstr.1189081UlmGermany
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Arnulf Latz
- Institute of Engineering Thermodynamics, German Aerospace Center (DLR)Pfaffenwaldring 38–4070569StuttgartGermany
- Helmholtz Institute Ulm (HIU)Helmholtzstr.1189081UlmGermany
- Institute of ElectrochemistryUlm University (UUlm)Albert-Einstein-Allee 4789081UlmGermany
| |
Collapse
|
12
|
Outhwaite CW, Bhuiyan LB. On the modified Poisson-Boltzmann closure for primitive model electrolytes at high concentration. J Chem Phys 2021; 155:014504. [PMID: 34241386 DOI: 10.1063/5.0054203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The modified Poisson-Boltzmann closure is applied to the Kirkwood hierarchy of integral equations to investigate high concentration primitive model electrolytes. Two approximations are considered in the two sphere fluctuation potential problem. The derived damped oscillatory mean electrostatic potentials suggest that this closure should be of use in providing a basis for understanding the large experimental decay lengths found at high electrolyte concentrations.
Collapse
Affiliation(s)
- Christopher W Outhwaite
- Department of Applied Mathematics, University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - Lutful Bari Bhuiyan
- Laboratory of Theoretical Physics, Department of Physics, University of Puerto Rico, 17 Avenida Universidad, STE 1701, San Juan, Puerto Rico 00925-2537, USA
| |
Collapse
|
13
|
On the analogy between the restricted primitive model and capacitor circuits: Semi-empirical alternatives for over- and underscreening in the calculation of mean ionic activity coefficients. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Ludwig M, von Klitzing R. Untangling superposed double layer and structural forces across confined nanoparticle suspensions. Phys Chem Chem Phys 2021; 23:1325-1334. [PMID: 33367336 DOI: 10.1039/d0cp05631f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The description of forces across confined complex fluids still holds many challenges due to the possible overlap of different contributions. Here, an attempt is made to untangle the interaction between charged surfaces across nanoparticle suspensions. Interaction forces are measured using colloidal-probe atomic force microscopy. The experimental force profiles are considered as a superposition of double layer and structural forces. In order to independently describe the decay of the double layer force, the ionic strength of the suspension is determined by electrolytic conductivity measurements. Jellium approximation is used to define the impact of the fluid on screening the surface potential. There, the nanoparticles are considered homogeneously distributed across the fluid and screening is only carried out via the particles counterions and added salt. The structural force follows a damped oscillatory profile due to the layer-wise expulsion of the nanoparticles upon approach of both surfaces. The description of the oscillatory structural force is extended by a depletion layer next to the confining surfaces, with no nanoparticles present. The thickness of the depletion layer is related to the electrostatic repulsion of the charged nanoparticles from the like-charged surfaces. The results show that the total force profile is a superposition of independent force contributions without any mutual effects. Using this rather simple model describes the complete experimentally determined interaction force profiles very well from surface separations of a few hundred nanometres down to the surfaces being almost in contact.
Collapse
Affiliation(s)
- Michael Ludwig
- Soft Matter at Interfaces, Department of Physics, Technische Universität Darmstadt, Hochschulstrasse 8, D-64289 Darmstadt, Germany.
| | - Regine von Klitzing
- Soft Matter at Interfaces, Department of Physics, Technische Universität Darmstadt, Hochschulstrasse 8, D-64289 Darmstadt, Germany.
| |
Collapse
|
15
|
Kubiak K, Maroni P, Trefalt G, Borkovec M. Oscillatory structural forces between charged interfaces in solutions of oppositely charged polyelectrolytes. SOFT MATTER 2020; 16:9662-9668. [PMID: 33078817 DOI: 10.1039/d0sm01257b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Forces between negatively charged micron-sized silica particles were measured in aqueous solutions of cationic polyelectrolytes with an atomic force microscope (AFM). In these oppositely charged systems, damped oscillatory force profiles were systematically observed in systems at higher polyelectrolyte concentrations, typically around few g L-1. The wavelength of these oscillations is decreasing with increasing concentration. When the wavelength and concentration are normalized with the cross-over concentration, universal power-law dependence is found. Thereby, the corresponding scaling exponent changes from 1/3 in the dilute regime to 1/2 in the semi-dilute regime. This dependence is the same as in the like-charged systems, which were described in the literature earlier. This common behavior suggests that these oscillatory forces are related to the structuring of the polyelectrolyte solutions. The reason that the oppositely charged systems behave similarly to like-charged ones is that the former systems undergo a charge reversal due to the adsorption of the polyelectrolytes to the oppositely charged surface, whereby sufficiently homogeneous adsorbed layers are being formed. The main finding of the present study is that at higher polyelectrolyte concentrations such oscillatory forces are the rule, including the oppositely charged ones.
Collapse
Affiliation(s)
- Katarzyna Kubiak
- Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1205 Geneva, Switzerland.
| | | | | | | |
Collapse
|
16
|
Kjellander R. A multiple decay-length extension of the Debye-Hückel theory: to achieve high accuracy also for concentrated solutions and explain under-screening in dilute symmetric electrolytes. Phys Chem Chem Phys 2020; 22:23952-23985. [PMID: 33073810 DOI: 10.1039/d0cp02742a] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Poisson-Boltzmann and Debye-Hückel approximations for the pair distributions and mean electrostatic potential in electrolytes predict that these entities have one single decay mode with a decay length equal to the Debye length 1/κD, that is, they have a characteristic contribution that decays with distance r like e-κDr/r. However, in reality, electrolytes have several decay modes e-κr/r, e-κ'r/r etc. with different decay lengths, 1/κ, 1/κ' etc., that in general are different from the Debye length. As an illustration of the significance of multiple decay modes in electrolytes, the present work uses a very simple extension of the Debye-Hückel approximation with two decay lengths, which predicts oscillatory modes when appropriate. This approach gives very accurate results for radial distribution functions and thermodynamic properties of aqueous solutions of monovalent electrolytes for all concentrations investigated, including high ones. It is designed to satisfy necessary statistical mechanical conditions for the distributions. The effective dielectric permittivity of the electrolyte plays an important role in the theory and each mode has its own value of this entity. Electrolytes with high electrostatic coupling, like those with multivalent ions and/or with solvent of low dielectric constant, have decay lengths in dilute solutions that substantially deviate from the Debye length. It is shown that this is caused by nonlinear ion-ion correlation effects and the origin of under-screening, i.e., 1/κ > 1/κD, in dilute symmetric electrolytes is analyzed. The under-screening is accompanied by an increase in the effective dielectric permittivity that is also caused by these correlations. The theoretical results for the decay length are successfully compared with recent experimental data for simple electrolytes in various solvents. The paper includes background material on electrolyte theory and screening in order to be accessible for nonexperts in the field.
Collapse
Affiliation(s)
- Roland Kjellander
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden.
| |
Collapse
|
17
|
Cheng HW, Valtiner M. Forces, structures, and ion mobility in nanometer-to-subnanometer extreme spatial confinements: Electrochemisty and ionic liquids. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Smith AM, Borkovec M, Trefalt G. Forces between solid surfaces in aqueous electrolyte solutions. Adv Colloid Interface Sci 2020; 275:102078. [PMID: 31837508 DOI: 10.1016/j.cis.2019.102078] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/11/2019] [Accepted: 11/18/2019] [Indexed: 11/15/2022]
Abstract
This review addresses experimental findings obtained with direct force measurements between two similar or dissimilar solid surfaces in aqueous electrolyte solutions. Interpretation of these measurements is mainly put forward in terms of the classical theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO). This theory invokes a superposition of attractive van der Waals forces and repulsive double layer forces. DLVO theory is shown to be extremely reliable, even in the case of multivalent ions. However, such a description is only successful, when appropriate surface charge densities, charge regulation characteristics, and ion pairing or complexation equilibria in solution are considered. Deviations from DLVO theory only manifest themselves at distances of typically below few nm. More long-ranged non-DLVO forces can be observed in some situations, particularly, in concentrated electrolyte solutions, in the presence of strongly adsorbed layers, or for hydrophobic surfaces. The latter forces probably originate from patch-charge surface heterogeneities, which can be induced by ion-ion correlation effects, charge fluctuations, or other types of surface heterogeneities.
Collapse
Affiliation(s)
- Alexander M Smith
- Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1205 Geneva, Switzerland
| | - Michal Borkovec
- Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1205 Geneva, Switzerland
| | - Gregor Trefalt
- Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1205 Geneva, Switzerland.
| |
Collapse
|
19
|
Ha D, Seo S, Lee K, Kim T. Dynamic Transport Control of Colloidal Particles by Repeatable Active Switching of Solute Gradients. ACS NANO 2019; 13:12939-12948. [PMID: 31600045 DOI: 10.1021/acsnano.9b05507] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Diffusiophoresis (DP) is described as typically being divided into chemiphoresis (CP) and electrophoresis (EP), and the related theory is well-established. However, not only the individual effect of CP and EP but also the size dependency on the resulting DP of colloidal particles has not yet been comprehensively demonstrated in an experimental manner. In this paper, we present a dynamic transport control mechanism for colloidal particles by developing a micro-/nanofluidic DP platform (MNDP). We demonstrate that the MNDP can generate transient and/or steady-state concentration gradients, making it possible to control the direction and rate of transport of colloidal particles through the individual manipulation of CP and EP by simply and rapidly switching solutions. In addition, the MNDP allows the size-dependent separation as well as fractionation of submicron particles through the individual manipulation of CP and EP, thus empirically validating the classic theoretical model for DP under the influence of electrical double layer (EDL) thickness. Furthermore, we provide theoretical analysis and simulation results that will enable the development of a versatile separation and/or fractionation technique for various colloidal particles, including biosamples, according to their size or electrical feature.
Collapse
Affiliation(s)
- Dogyeong Ha
- Department of Mechanical Engineering , Ulsan National Institute of Science and Technology (UNIST) , 50 UNIST-gil , Ulsan 44919 , Republic of Korea
| | - Sangjin Seo
- Department of Mechanical Engineering , Ulsan National Institute of Science and Technology (UNIST) , 50 UNIST-gil , Ulsan 44919 , Republic of Korea
| | - Kyunghun Lee
- Department of Mechanical Engineering , Ulsan National Institute of Science and Technology (UNIST) , 50 UNIST-gil , Ulsan 44919 , Republic of Korea
| | - Taesung Kim
- Department of Mechanical Engineering , Ulsan National Institute of Science and Technology (UNIST) , 50 UNIST-gil , Ulsan 44919 , Republic of Korea
| |
Collapse
|
20
|
Kjellander R. The intimate relationship between the dielectric response and the decay of intermolecular correlations and surface forces in electrolytes. SOFT MATTER 2019; 15:5866-5895. [PMID: 31243425 DOI: 10.1039/c9sm00712a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A general, exact theory for the decay of interactions between any particles immersed in electrolytes, including surface forces between macroscopic bodies, is derived in a self-contained, physically transparent manner. It is valid for electrolytes at any density, including ionic gases, molten salts, ionic liquids, and electrolyte solutions with molecular solvent at any concentration. The ions, the solvent and any other particles in the system can have any sizes, any shapes and arbitrary internal charge distributions. The spatial propagation of the interactions in electrolytes has several decay modes with different decay lengths that are given by the solutions, κν, ν = 1, 2,…, to a general equation for the screening parameter κ; an equation that describes the dielectric response. There can exist simultaneous decay modes with plain exponential decay and modes with damped oscillatory exponential decay, as observed experimentally and theoretically. In the limit of zero ionic density, the decay length 1/κν of the mode with the longest range approaches the Debye length 1/κD. The coupling between fluctuations in number density and charge density, described by the density-charge correlation function HNQ(r), makes all decay modes of pair correlations and interaction free energies identical to those of the screened electrostatic potential, and hence they have the same values for the screening parameters. The density-density and charge-charge correlation functions, HNN(r) and HQQ(r), also have these decay modes. For the exceptional case of charge-inversion invariant systems, HNQ(r) is identically zero for symmetry reasons and HNN(r) and HQQ(r) have, instead, decay modes with different decay lengths.
Collapse
Affiliation(s)
- Roland Kjellander
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden.
| |
Collapse
|