1
|
Oliveira AC, Filipe HAL, Geraldes CF, Voth GA, Moreno MJ, Loura LMS. Interaction of MRI Contrast Agent [Gd(DOTA)] - with Lipid Membranes: A Molecular Dynamics Study. Inorg Chem 2024; 63:10897-10914. [PMID: 38795015 PMCID: PMC11186012 DOI: 10.1021/acs.inorgchem.4c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/27/2024]
Abstract
Contrast agents are important imaging probes in clinical MRI, allowing the identification of anatomic changes that otherwise would not be possible. Intensive research on the development of new contrast agents is being made to image specific pathological markers or sense local biochemical changes. The most widely used MRI contrast agents are based on gadolinium(III) complexes. Due to their very high charge density, they have low permeability through tight biological barriers such as the blood-brain barrier, hampering their application in the diagnosis of neurological disorders. In this study, we explore the interaction between the widely used contrast agent [Gd(DOTA)]- (Dotarem) and POPC lipid bilayers by means of molecular dynamics simulations. This metal complex is a standard reference where several chemical modifications have been introduced to improve key properties such as bioavailability and targeting. The simulations unveil detailed insights into the agent's interaction with the lipid bilayer, offering perspectives beyond experimental methods. Various properties, including the impact on global and local bilayer properties, were analyzed. As expected, the results indicate a low partition coefficient (KP) and high permeation barrier for this reference compound. Nevertheless, favorable interactions are established with the membrane leading to moderately long residence times. While coordination of one inner-sphere water molecule is maintained for the membrane-associated chelate, the physical-chemical attributes of [Gd(DOTA)]- as a MRI contrast agent are affected. Namely, increases in the rotational correlation times and in the residence time of the inner-sphere water are observed, with the former expected to significantly increase the water proton relaxivity. This work establishes a reference framework for the use of simulations to guide the rational design of new contrast agents with improved relaxivity and bioavailability and for the development of liposome-based formulations for use as imaging probes or theranostic agents.
Collapse
Affiliation(s)
- Alexandre C. Oliveira
- Coimbra
Chemistry Centre, Institute of Molecular
Sciences (CQC-IMS), 3004-535 Coimbra, Portugal
- Department
of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Hugo A. L. Filipe
- Coimbra
Chemistry Centre, Institute of Molecular
Sciences (CQC-IMS), 3004-535 Coimbra, Portugal
- CPIRN-IPG—Center
of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| | - Carlos F.G.C. Geraldes
- Coimbra
Chemistry Centre, Institute of Molecular
Sciences (CQC-IMS), 3004-535 Coimbra, Portugal
- Department
of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-393 Coimbra, Portugal
- CIBIT/ICNAS
- Instituto de Ciências Nucleares Aplicadas à Saúde, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Gregory A. Voth
- Department
of Chemistry, Chicago Center for Theoretical Chemistry, James Franck
Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Maria João Moreno
- Coimbra
Chemistry Centre, Institute of Molecular
Sciences (CQC-IMS), 3004-535 Coimbra, Portugal
- Department
of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- CNC−Center
for Neuroscience and Cell Biology, University
of Coimbra, 3004-517 Coimbra, Portugal
| | - Luís M. S. Loura
- Coimbra
Chemistry Centre, Institute of Molecular
Sciences (CQC-IMS), 3004-535 Coimbra, Portugal
- Faculty
of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC−Center
for Neuroscience and Cell Biology, University
of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
2
|
Oliveira A, Filipe HAL, Ramalho JP, Salvador A, Geraldes CFGC, Moreno MJ, Loura LMS. Modeling Gd 3+ Complexes for Molecular Dynamics Simulations: Toward a Rational Optimization of MRI Contrast Agents. Inorg Chem 2022; 61:11837-11858. [PMID: 35849762 PMCID: PMC9775472 DOI: 10.1021/acs.inorgchem.2c01597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The correct parametrization of lanthanide complexes is of the utmost importance for their characterization using computational tools such as molecular dynamics simulations. This allows the optimization of their properties for a wide range of applications, including medical imaging. Here we present a systematic study to establish the best strategies for the correct parametrization of lanthanide complexes using [Gd(DOTA)]- as a reference, which is used as a contrast agent in MRI. We chose the bonded model to parametrize the lanthanide complexes, which is especially important when considering the study of the complex as a whole (e.g., for the study of the dynamics of its interaction with proteins or membranes). We followed two strategies: a so-called heuristic approach employing strategies already published by other authors and another based on the more recent MCPB.py tool. Adjustment of the Lennard-Jones parameters of the metal was required. The final topologies obtained with both strategies were able to reproduce the experimental ion to oxygen distance, vibrational frequencies, and other structural properties. We report a new strategy to adjust the Lennard-Jones parameters of the metal ion in order to capture dynamic properties such as the residence time of the capping water (τm). For the first time, the correct assessment of the τm value for Gd-based complexes was possible by recording the dissociative events over up to 10 μs all-atom simulations. The MCPB.py tool allowed the accurate parametrization of [Gd(DOTA)]- in a simpler procedure, and in this case, the dynamics of the water molecules in the outer hydration sphere was also characterized. This sphere was divided into the first hydration layer, an intermediate region, and an outer hydration layer, with a residence time of 18, 10 and 19 ps, respectively, independent of the nonbonded parameters chosen for Gd3+. The Lennard-Jones parameters of Gd3+ obtained here for [Gd(DOTA)]- may be used with similarly structured gadolinium MRI contrast agents. This allows the use of molecular dynamics simulations to characterize and optimize the contrast agent properties. The characterization of their interaction with membranes and proteins will permit the design of new targeted contrast agents with improved pharmacokinetics.
Collapse
Affiliation(s)
- Alexandre
C. Oliveira
- Coimbra
Chemistry Center - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal,Department
of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Hugo A. L. Filipe
- Coimbra
Chemistry Center - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal,CPIRN-IPG-Center
of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| | - João P.
Prates Ramalho
- Hercules
Laboratory, LAQV, REQUIMTE, Department of Chemistry, School of Science
and Technology, University of Évora, 7000-671 Évora, Portugal
| | - Armindo Salvador
- Coimbra
Chemistry Center - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal,CNC−Center
for Neuroscience and Cell Biology, University
of Coimbra, P-3004-517 Coimbra, Portugal,Institute
for Interdisciplinary Research - University of Coimbra, Casa Costa Alemão- Polo II, Rua D. Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Carlos F. G. C. Geraldes
- Coimbra
Chemistry Center - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal,Department
of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-393 Coimbra, Portugal,CIBIT/ICNAS
- Instituto de Ciências Nucleares Aplicadas à Saúde, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria João Moreno
- Coimbra
Chemistry Center - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal,Department
of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal,
| | - Luís M. S. Loura
- Coimbra
Chemistry Center - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal,Faculty
of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal,
| |
Collapse
|
3
|
Cantero-López P, Santoyo-Flores J, Vega A, Carreño A, Fuentes JA, Ramirez-Osorio A, Ortiz A, Illicachi LA, Sánchez J, Olea AF, Páez-Hernández D. A theoretical chemistry-based strategy for the rational design of new luminescent lanthanide complexes: an approach from a multireference SOC-NEVPT2 method. Dalton Trans 2021; 50:13561-13571. [PMID: 34514486 DOI: 10.1039/d1dt02037d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Theoretical methods of the SOC-NEVPT2 type combined with a molecular fragmentation scheme have been proven to be a powerful tool that allows explaining the luminescence sensitization mechanism in Ln(III) coordination compounds through the antenna effect. In this work, we have used this strategy to predict luminescence in a family of compounds of the Eu(R-phen)(BTA)3 type where R-phen = 5-methyl-1,10-phenanthroline (Me-phen), 5-nitro-1,10-71 phenanthroline (Nitro-phen), 4,5-diazafluoren-9-one (One-phen), or 5,6-epoxy-5,6-dihydro-1,10-72 phenanthroline (Epoxy-phen); and BTA = fluorinated β-diketone. Possible sensitization pathways were elucidated from the energy difference between the ligand-centered triplet (3T) states and the emissive excited states of the Eu(III) fragments (Latva rules). Calculations show that the most probable mechanism occurs through the triplet state of the BTA which should be enriched by several parallel energy transfer pathways from R-phen substituents. The complexes were synthesized and structurally characterized by X-ray crystallography and various other physicochemical and spectroscopic methods to realize their optical properties and energy transfer pathways from dual antennae. Experimental results were in good agreement with the theoretical predictions, which reinforces the predictive power of the used theoretical methodology.
Collapse
Affiliation(s)
- Plinio Cantero-López
- Center of Applied Nanoscience (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Av. República 330, Santiago, Chile.
| | - Julián Santoyo-Flores
- Doctorado en Fisicoquímica Molecular, Universidad Andres Bello, Facultad de Ciencias Exactas, República 275, Santiago, Chile
| | - Andrés Vega
- Departamento de Ciencias Química, Universidad Andrés Bello, Facultad de Ciencias Exactas, Quillota 980, Viña del Mar, Chile
| | - Alexander Carreño
- Center of Applied Nanoscience (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Av. República 330, Santiago, Chile.
| | - Juan A Fuentes
- Laboratorio de Genética y Patógénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 330, Santiago, Chile
| | - Angélica Ramirez-Osorio
- Center of Applied Nanoscience (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Av. República 330, Santiago, Chile.
| | - Alejandro Ortiz
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, A.A. 25360, Cali, Colombia.,Center for Research and Innovation in Bioinformatics and Photonics-CIBioFi, Calle 13 No. 100-00, Edificio 320, No. 1069, Cali, Colombia
| | - Luis Alberto Illicachi
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, A.A. 25360, Cali, Colombia.,Center for Research and Innovation in Bioinformatics and Photonics-CIBioFi, Calle 13 No. 100-00, Edificio 320, No. 1069, Cali, Colombia
| | - Julio Sánchez
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Santiago, Chile
| | - Andrés F Olea
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago, Chile
| | - Dayán Páez-Hernández
- Center of Applied Nanoscience (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Av. República 330, Santiago, Chile. .,Doctorado en Fisicoquímica Molecular, Universidad Andres Bello, Facultad de Ciencias Exactas, República 275, Santiago, Chile
| |
Collapse
|
4
|
Beltrán-Leiva MJ, Solis-Céspedes E, Páez-Hernández D. The role of the excited state dynamic of the antenna ligand in the lanthanide sensitization mechanism. Dalton Trans 2020; 49:7444-7450. [DOI: 10.1039/d0dt01132k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A fragmentation scheme has been used to describe the photophysical phenomena associated with the antenna effect in organometallic lanthanide complexes. The theoretical protocol allows justifying the sensitization pathways.
Collapse
|