1
|
Robinson Brown DC, Webber TR, Casey TM, Franck J, Shell MS, Han S. Computation of Overhauser dynamic nuclear polarization processes reveals fundamental correlation between water dynamics, structure, and solvent restructuring entropy. Phys Chem Chem Phys 2024; 26:14637-14650. [PMID: 38742831 DOI: 10.1039/d4cp00030g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Hydration water dynamics, structure, and thermodynamics are crucially important to understand and predict water-mediated properties at molecular interfaces. Yet experimentally and directly quantifying water behavior locally near interfaces at the sub-nanometer scale is challenging, especially at interfaces submerged in biological solutions. Overhauser dynamic nuclear polarization (ODNP) experiments measure equilibrium hydration water dynamics within 8-15 angstroms of a nitroxide spin probe on instantaneous timescales (10 picoseconds to nanoseconds), making ODNP a powerful tool for probing local water dynamics in the vicinity of the spin probe. As with other spectroscopic techniques, concurrent computational analysis is necessary to gain access to detailed molecular level information about the dynamic, structural, and thermodynamic properties of water from experimental ODNP data. We chose a model system that can systematically tune the dynamics of water, a water-glycerol mixture with compositions ranging from 0 to 0.3 mole fraction glycerol. We demonstrate the ability of molecular dynamics (MD) simulations to compute ODNP spectroscopic quantities, and show that translational, rotational, and hydrogen bonding dynamics of hydration water align strongly with spectroscopic ODNP parameters. Moreover, MD simulations show tight correlations between the dynamic properties of water that ODNP captures and the structural and thermodynamic behavior of water. Hence, experimental ODNP readouts of varying water dynamics suggest changes in local structural and thermodynamic hydration water properties.
Collapse
Affiliation(s)
- Dennis C Robinson Brown
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Thomas R Webber
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Thomas M Casey
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - John Franck
- Department of Chemistry, Syracuse University, Syracuse, NY, USA
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
2
|
Pem B, Brkljača Z, Philippe A, Schaumann GE, Vazdar M, Bakarić D. FTIR spectroscopy and molecular level insight of diluted aqueous solutions of acetic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123135. [PMID: 37454436 DOI: 10.1016/j.saa.2023.123135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Aqueous solutions of acetic acid (AA) have been intensively explored for decades with a particular attention addressed to the hydrogen bond network generated by COOH group at different concentrations. In majority of studies conducted so far the envelope originated from νCO is decomposed into two bands assigned to differently hydrated monomers: the one presumably to AA···H2O, and another one to AA···(H2O)2. In order to examine if species other than the mentioned monomers produce this spectral signature, we performed computational and FTIR spectroscopic study of AA in aqueous solutions. Dilute solutions of deuterated acetic acid (CD3COOD) in D2O and in C2Cl4 as a reference were prepared (c0 = 0.001, 0.01 and 0.1 mol dm-3) as well as of deuterated sodium acetate (CD3COONa) in D2O. CD3COOD in 0.1 mol dm-3 solution in D2O displays a feature that separated in two signals with maxima at 1706 cm-1 and 1687 cm-1. A combined DFT and molecular dynamics study performed in this work showed the assignation of those spectral bands to be a more complex problem than previously thought, with syn-anti isomerism and hydration contributing to the experimentally observed broad νCO envelope.
Collapse
Affiliation(s)
- Barbara Pem
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Zlatko Brkljača
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; Selvita d.o.o. Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Allan Philippe
- University of Koblenz-Landau, iES Landau-Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstraße 7, D-76829 Landau, Germany
| | - Gabriele E Schaumann
- University of Koblenz-Landau, iES Landau-Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstraße 7, D-76829 Landau, Germany
| | - Mario Vazdar
- Department of Mathematics, Informatics and Cybernetics, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Danijela Bakarić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; University of Koblenz-Landau, iES Landau-Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstraße 7, D-76829 Landau, Germany.
| |
Collapse
|
3
|
Wang Y, Xiong Y, Chen M, Liu F, He H, Ma Q, Gao P, Xiang G, Zhang L. The biological effects of terahertz wave radiation-induced injury on neural stem cells. iScience 2023; 26:107418. [PMID: 37771661 PMCID: PMC10523010 DOI: 10.1016/j.isci.2023.107418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/26/2023] [Accepted: 07/14/2023] [Indexed: 09/30/2023] Open
Abstract
Terahertz (THz) is an electromagnetic wave with a radiation wavelength range of 30-3000 μm and a frequency of 0.1-10 THz. With the development of new THz sources and devices, THz has been widely applied in various fields. However, there are few studies on biological effects of THz irradiation on the human neural stem cells (hNSCs) and mouse neural stem cells (mNSCs), which need to be further studied. We studied the biological effects of THz radiation on hNSCs and mNSCs. The effects of THz irradiation time and average output power on the proliferation, apoptosis, and DNA damage of NSCs were analyzed by flow cytometry and immunofluorescence. The results showed that the proliferation and apoptosis of NSCs were dose-dependently affected by THz irradiation time and average output power. The proliferation of hNSCs was more vulnerable to damage and apoptosis was more serious under the same terahertz irradiation conditions compared to those of mNSCs.
Collapse
Affiliation(s)
- Yunxia Wang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Yu Xiong
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Man Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Fei Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Haiyan He
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Qinlong Ma
- Department of Occupational Health, Faculty of Preventive Medicine, Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education of China, Army Medical University, Chongqing 400038, China
| | - Peng Gao
- Department of Occupational Health, Faculty of Preventive Medicine, Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education of China, Army Medical University, Chongqing 400038, China
| | - Guiming Xiang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Liqun Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
4
|
Zhang J, Yan Y, Wang B, Liu L, Li S, Tian Z, Ouyang C, Gu J, Zhang X, Chen Y, Han J, Zhang W. Water dynamics in the hydration shell of hyper-branched poly-ethylenimine. Phys Chem Chem Phys 2022; 24:18393-18400. [PMID: 35880732 DOI: 10.1039/d2cp01944b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We performed THz and GHz dielectric relaxation spectroscopy to investigate the reorientational dynamics of water molecules in the hydration shell of amphiphilic hyper-branched poly-ethylenimine (HPEI). Four Debye equations were employed to describe four types of water in the hydration shell, including bulk-like water, under-coordinated water, slow water (water molecules hydrating the hydrophobic groups and water molecules accepting hydrogen bonds from the NH2 groups) and super slow water (water molecules donating hydrogen bonds to and accepting hydrogen bonds from NH groups). The time scales of undercoordinated and bulk-like water show a slight decline from 0.4 to 0.1 ps and from 8 to 2 ps, respectively. Because of hydrophilic amino groups, HPEI molecules exhibit a strong retardation effect, where the time scales of slow and super slow water increase with concentration from 17 to 39.9 ps and from 88 to 225 ps, respectively.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Centre for Terahertz Waves and College of Precision Instrument and Optoeletronics Engineering, Tianjin University, Tinajin 300072, People's Republic of China.
| | - Yuyue Yan
- Centre for Terahertz Waves and College of Precision Instrument and Optoeletronics Engineering, Tianjin University, Tinajin 300072, People's Republic of China.
| | - Bin Wang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin 300072, People's Republic of China
| | - Liyuan Liu
- Centre for Terahertz Waves and College of Precision Instrument and Optoeletronics Engineering, Tianjin University, Tinajin 300072, People's Republic of China.
| | - Shaoxian Li
- Centre for Terahertz Waves and College of Precision Instrument and Optoeletronics Engineering, Tianjin University, Tinajin 300072, People's Republic of China.
| | - Zhen Tian
- Centre for Terahertz Waves and College of Precision Instrument and Optoeletronics Engineering, Tianjin University, Tinajin 300072, People's Republic of China.
| | - Chunmei Ouyang
- Centre for Terahertz Waves and College of Precision Instrument and Optoeletronics Engineering, Tianjin University, Tinajin 300072, People's Republic of China.
| | - Jianqiang Gu
- Centre for Terahertz Waves and College of Precision Instrument and Optoeletronics Engineering, Tianjin University, Tinajin 300072, People's Republic of China.
| | - Xueqian Zhang
- Centre for Terahertz Waves and College of Precision Instrument and Optoeletronics Engineering, Tianjin University, Tinajin 300072, People's Republic of China.
| | - Yu Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Sciences, Tianjin University, Tianjin 300354, China
| | - Jiaguang Han
- Centre for Terahertz Waves and College of Precision Instrument and Optoeletronics Engineering, Tianjin University, Tinajin 300072, People's Republic of China.
| | - Weili Zhang
- School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA.
| |
Collapse
|
5
|
Zupančič B, Grdadolnik J. Solute-induced changes in the water H-bond network of different alcohol-aqueous systems. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Latypova L, Barshtein G, Puzenko A, Poluektov Y, Anashkina A, Petrushanko I, Fenk S, Bogdanova A, Feldman Y. Oxygenation state of hemoglobin defines dynamics of water molecules in its vicinity. J Chem Phys 2021; 153:135101. [PMID: 33032403 DOI: 10.1063/5.0023945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
This study focuses on assessing the possible impact of changes in hemoglobin (Hb) oxygenation on the state of water in its hydration shell as it contributes to red blood cell deformability. Microwave Dielectric Spectroscopy (MDS) was used to monitor the changes in interactions between water molecules and Hb, the number of water molecules in the protein hydration shell, and the dynamics of pre-protein water in response to the transition of Hb from the tense (T) to the relaxed (R) state, and vice versa. Measurements were performed for Hb solutions of different concentrations (5 g/dl-30 g/dl) in phosphate-buffered saline buffer. Cole-Cole parameters of the main water relaxation peak in terms of interactions of water molecules (dipole-dipole/ionic dipole) during the oxygenation-deoxygenation cycle were used to analyze the obtained data. The water mobility-represented by α as a function of ln τ-differed dramatically between the R (oxygenated) state and the T (deoxygenated) state of Hb at physiologically relevant concentrations (30 g/dl-35 g/dl or 4.5 mM-5.5 mM). At these concentrations, oxygenated hemoglobin was characterized by substantially lower mobility of water in the hydration shell, measured as an increase in relaxation time, compared to deoxyhemoglobin. This change indicated an increase in red blood cell cytosolic viscosity when cells were oxygenated and a decrease in viscosity upon deoxygenation. Information provided by MDS on the intraerythrocytic water state of intact red blood cells reflects its interaction with all of the cytosolic components, making these measurements powerful predictors of the changes in the rheological properties of red blood cells, regardless of the cause.
Collapse
Affiliation(s)
- Larisa Latypova
- Department of Applied Physics, The Hebrew University of Jerusalem, Givat Ram 91904, Israel
| | - Gregory Barshtein
- Department of Biochemistry, The Faculty of Medicine, The Hebrew University, Campus Ein Kerem, Jerusalem 91120, Israel
| | - Alexander Puzenko
- Department of Applied Physics, The Hebrew University of Jerusalem, Givat Ram 91904, Israel
| | - Yuri Poluektov
- Engelhart Institute of Molecular Biology, Russian Academy of Science, Vavilov St. 32, 119991 Moscow, Russia
| | - Anastasia Anashkina
- Engelhart Institute of Molecular Biology, Russian Academy of Science, Vavilov St. 32, 119991 Moscow, Russia
| | - Irina Petrushanko
- Engelhart Institute of Molecular Biology, Russian Academy of Science, Vavilov St. 32, 119991 Moscow, Russia
| | - Simone Fenk
- Red Blood Cell Research Group, Institute of Veterinary Physiology, University of Zürich, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, University of Zürich, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland
| | - Yuri Feldman
- Department of Applied Physics, The Hebrew University of Jerusalem, Givat Ram 91904, Israel
| |
Collapse
|
7
|
Monroe J, Barry M, DeStefano A, Aydogan Gokturk P, Jiao S, Robinson-Brown D, Webber T, Crumlin EJ, Han S, Shell MS. Water Structure and Properties at Hydrophilic and Hydrophobic Surfaces. Annu Rev Chem Biomol Eng 2020; 11:523-557. [PMID: 32169001 DOI: 10.1146/annurev-chembioeng-120919-114657] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The properties of water on both molecular and macroscopic surfaces critically influence a wide range of physical behaviors, with applications spanning from membrane science to catalysis to protein engineering. Yet, our current understanding of water interfacing molecular and material surfaces is incomplete, in part because measurement of water structure and molecular-scale properties challenges even the most advanced experimental characterization techniques and computational approaches. This review highlights progress in the ongoing development of tools working to answer fundamental questions on the principles that govern the interactions between water and surfaces. One outstanding and critical question is what universal molecular signatures capture the hydrophobicity of different surfaces in an operationally meaningful way, since traditional macroscopic hydrophobicity measures like contact angles fail to capture even basic properties of molecular or extended surfaces with any heterogeneity at the nanometer length scale. Resolving this grand challenge will require close interactions between state-of-the-art experiments, simulations, and theory, spanning research groups and using agreed-upon model systems, to synthesize an integrated knowledge of solvation water structure, dynamics, and thermodynamics.
Collapse
Affiliation(s)
- Jacob Monroe
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Mikayla Barry
- Department of Materials, University of California, Santa Barbara, California 93106, USA
| | - Audra DeStefano
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Pinar Aydogan Gokturk
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Sally Jiao
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Dennis Robinson-Brown
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Thomas Webber
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Ethan J Crumlin
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; .,Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| |
Collapse
|
8
|
Zhang J, Wu X, Liu L, Huang C, Chen X, Tian Z, Ouyang C, Gu J, Zhang X, He M, Han J, Luo X, Zhang W. Ultra-broadband microwave metamaterial absorber with tetramethylurea inclusion. OPTICS EXPRESS 2019; 27:25595-25602. [PMID: 31510429 DOI: 10.1364/oe.27.025595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
The absorption region of a water-based absorber was expanded by introducing tetramethylurea (TMU) into the inclusion, whose dielectric properties are tunable through the concentration of TMU. The dielectric spectroscopy of a TMU/water mixture was deconstructed using a Debye model. We designed a four-layer ultra-broadband microwave absorber with a supernatant micro-structure. Simulation and experiment results indicate that the absorber can achieve 90% perfect absorption, covering a broad frequency range of 4-40 GHz. The concentration dependence of the absorber was also studied experimentally and numerically. The concentration control provides a more practical and large frequency-region modulation of perfect absorption.
Collapse
|