1
|
Voeten RLC, Majeed HA, Bos TS, Somsen GW, Haselberg R. Investigating direct current potentials that affect native protein conformation during trapped ion mobility spectrometry-mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5021. [PMID: 38605451 DOI: 10.1002/jms.5021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/13/2023] [Accepted: 03/06/2024] [Indexed: 04/13/2024]
Abstract
Trapped ion mobility spectrometry-time-of-flight mass spectrometry (TIMS-TOFMS) has emerged as a tool to study protein conformational states. In TIMS, gas-phase ions are guided across the IM stages by applying direct current (DC) potentials (D1-6), which, however, might induce changes in protein structures through collisional activation. To define conditions for native protein analysis, we evaluated the influence of these DC potentials using the metalloenzyme bovine carbonic anhydrase (BCA) as primary test compound. The variation of DC potentials did not change BCA-ion charge and heme content but affected (relative) charge-state intensities and adduct retention. Constructed extracted-ion mobilograms and corresponding collisional cross-section (CCS) profiles gave useful insights in (alterations of) protein conformational state. For BCA, the D3 and D6 potential (which are applied between the deflection transfer and funnel 1 [F1] and the accumulation exit and the start of the ramp, respectively) had most profound effects, showing multimodal CCS distributions at higher potentials indicating gradual unfolding. The other DC potentials only marginally altered the CCS profiles of BCA. To allow for more general conclusions, five additional proteins of diverse molecular weight and conformational stability were analyzed, and for the main protein charge states, CCS profiles were constructed. Principal component analysis (PCA) of the obtained data showed that D1 and D3 exhibit the highest degree of correlation with the ratio of folded and unfolded protein (F/U) as extracted from the mobilograms obtained per set D potential. The correlation of D6 with F/U and protein charge were similar, and D2, D4, and D5 showed an inverse correlation with F/U but were correlated with protein charge. Although DC boundary values for induced conformational changes appeared protein dependent, a set of DC values could be determined, which assured native analysis of most proteins.
Collapse
Affiliation(s)
- Robert L C Voeten
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
- TI-COAST, Amsterdam, The Netherlands
| | - Hany A Majeed
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Tijmen S Bos
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Rob Haselberg
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| |
Collapse
|
2
|
Cristea CD, Radu M, Toboc A, Stan C, David V. Cationic exchange SPE combined with triple quadrupole UHPLC-MS/MS for detection of GHRHs in urine samples. Anal Biochem 2023; 682:115336. [PMID: 37806509 DOI: 10.1016/j.ab.2023.115336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
The use of growth hormone-releasing hormones (GHRHs) is prohibited in sports according to the regulations of the World Anti-Doping Agency (WADA). Considering the complexity of urine samples and the low concentrations at which these analytes should be detected, analyzing GHRHs is a challenging task. In most of the studies, GHRHs are analyzed using UHPLC-HRMS with an orbitrap. The present developed and validated method for some GHRHs (tesamorelin, CJC-1295, sermorelin (GRF 1-29), sermorelin (3-29)-NH2, somatorelin) is based on the triple quadrupole UHPLC/MS-MS method with solid phase extraction (SPE) with weak cation exchange and is able to detect concentrations as low as 0.2 ng/mL (LOD), a limit of quantification (LOQ) at 0.6 ng/mL, and linearity across the range of 0.1 ng/mL to 1.2 ng/mL. The present method developed by our doping control laboratory was validated according to WADA technical documents for selectivity, limit of detection (LOD), carryover, reliability of detection, stability and recovery. The results show that the method has adequate recoveries and sensitivity, hence, it can be employed for routine screening in anti-doping laboratories.
Collapse
Affiliation(s)
- Cătălina-Diana Cristea
- University of Bucharest, Faculty of Chemistry, Department of Analytical and Physical Chemistry, Sos. Panduri, No. 90, Sect 5, Bucharest, 050663, Romania; Romanian Doping Control Laboratory, Bldv. Basarabia, No. 37-39, Sect 2, Bucharest, 022103, Romania.
| | - Mihai Radu
- Romanian Doping Control Laboratory, Bldv. Basarabia, No. 37-39, Sect 2, Bucharest, 022103, Romania.
| | - Ani Toboc
- Romanian Doping Control Laboratory, Bldv. Basarabia, No. 37-39, Sect 2, Bucharest, 022103, Romania.
| | - Cristina Stan
- Romanian Doping Control Laboratory, Bldv. Basarabia, No. 37-39, Sect 2, Bucharest, 022103, Romania.
| | - Victor David
- University of Bucharest, Faculty of Chemistry, Department of Analytical and Physical Chemistry, Sos. Panduri, No. 90, Sect 5, Bucharest, 050663, Romania.
| |
Collapse
|
3
|
Fernandez-Maestre R, Tabrizchi M, Meza-Morelos D. Ion-shift reagent binding energy and the mass-mobility shift correlation in ion mobility spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9360. [PMID: 35869640 DOI: 10.1002/rcm.9360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE Ion mobility spectrometry (IMS) detects illegal substances and explosives in airports, ports, and customs. This is complicated by false positives caused by overlapping peaks. Shift reagents selectively change ion mobilities through adduction with analyte ions. This discriminates false positives because interferents and illegal substances respond differently to shift reagents. METHODS We introduced five different shift reagents using electrospray ionization-IMS-mass spectrometry to study the effect of interaction energy, intermolecular bonds, and analyte size on ion mobility shifts. Analyte ion-shift reagent interactions were calculated using Gaussian. RESULTS The mobility shifts showed a decreasing trend as the molecular weight increased for a series of ten compounds. The shift in drift time better reflected the pure effect of shift reagents. Valinol was an exception to this trend because it had a low binding energy interaction with all shift reagents and, consequently, its clusters were short-lived. This produced fewer collisions against the buffer gas and a shorter drift time, compared to ions of similar molecular weight. CONCLUSIONS The results of this investigation are important for understanding the behavior of shift reagents in resolving overlapping peaks that cause interferences. The suppression of false positives eases the transit of passengers and cargos, increases the confiscation of illicit substances, and saves money and distress due to needless delays in customs and airports.
Collapse
Affiliation(s)
- Roberto Fernandez-Maestre
- Campus de San Pablo, Programa de Química, Universidad de Cartagena, Cartagena, Colombia
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| | - Mahmoud Tabrizchi
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| | - Dairo Meza-Morelos
- Campus de San Pablo, Programa de Química, Universidad de Cartagena, Cartagena, Colombia
| |
Collapse
|
4
|
Applications of ion mobility-mass spectrometry in the chemical analysis in traditional Chinese medicines. Se Pu 2022; 40:782-787. [PMID: 36156624 PMCID: PMC9516353 DOI: 10.3724/sp.j.1123.2022.01028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
离子淌度质谱(IM-MS)是一种将离子淌度分离与质谱分析相结合的新型分析技术。IM-MS的主要优势不仅是在质谱检测前提供了基于气相离子形状、大小、电荷数等因素的多一维分离,而且能够提供碰撞截面积、漂移时间等质谱信息进而辅助化合物鉴定。近年来,随着IM-MS技术的不断发展,该技术在中药化学成分分析中受到越来越多的关注。首先,IM-MS已成功应用于改善中药复杂成分尤其是同分异构体或等量异位素等成分的分离;其次,IM-MS可通过多重碎裂模式辅助高质量中药小分子质谱信息的获取;此外,IM-MS提供的高维质谱数据信息还可促进中药复杂体系多成分的整合分析。该文在对IM-MS分类和基本原理进行概述的基础上,从分离能力及分离策略、多重碎裂模式、多维质谱数据处理策略3个方面,重点综述了IM-MS在中药化学成分分析中的应用,以期为IM-MS在中药化学成分研究提供参考。
Collapse
|
5
|
De La Toba EA, Bell SE, Romanova EV, Sweedler JV. Mass Spectrometry Measurements of Neuropeptides: From Identification to Quantitation. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:83-106. [PMID: 35324254 DOI: 10.1146/annurev-anchem-061020-022048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neuropeptides (NPs), a unique class of neuronal signaling molecules, participate in a variety of physiological processes and diseases. Quantitative measurements of NPs provide valuable information regarding how these molecules are differentially regulated in a multitude of neurological, metabolic, and mental disorders. Mass spectrometry (MS) has evolved to become a powerful technique for measuring trace levels of NPs in complex biological tissues and individual cells using both targeted and exploratory approaches. There are inherent challenges to measuring NPs, including their wide endogenous concentration range, transport and postmortem degradation, complex sample matrices, and statistical processing of MS data required for accurate NP quantitation. This review highlights techniques developed to address these challenges and presents an overview of quantitative MS-based measurement approaches for NPs, including the incorporation of separation methods for high-throughput analysis, MS imaging for spatial measurements, and methods for NP quantitation in single neurons.
Collapse
Affiliation(s)
- Eduardo A De La Toba
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Sara E Bell
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Elena V Romanova
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan V Sweedler
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
6
|
Tomczyk N, Giles K, Richardson K, Ujma J, Palmer M, Nielsen PK, Haselmann KF. Mapping Isomeric Peptides Derived from Biopharmaceuticals Using High-Resolution Ion Mobility Mass Spectrometry. Anal Chem 2021; 93:16379-16384. [PMID: 34842410 DOI: 10.1021/acs.analchem.1c02834] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The identification and localization of isomeric peptide modifications is a critical requirement of the biopharmaceutical industry. Despite the ability of liquid chromatography-mass spectrometry to identify many of the common post translational modifications, the identification of isobaric or racemized peptides is confounded by modern mass spectrometry-based techniques. Here, we present a novel approach combining liquid chromatography with a high-resolution ion mobility mass spectrometry system to differentiate peptide and peptide fragments based upon their mobility and mass.
Collapse
Affiliation(s)
- Nick Tomczyk
- Waters Corporation, Stamford Avenue, Wilmslow SK9 4AX, U.K
| | - Kevin Giles
- Waters Corporation, Stamford Avenue, Wilmslow SK9 4AX, U.K
| | | | - Jakub Ujma
- Waters Corporation, Stamford Avenue, Wilmslow SK9 4AX, U.K
| | - Martin Palmer
- Waters Corporation, Stamford Avenue, Wilmslow SK9 4AX, U.K
| | - Peter Kresten Nielsen
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Park, Maaloev DK-2760, Denmark
| | - Kim F Haselmann
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Park, Maaloev DK-2760, Denmark
| |
Collapse
|
7
|
Pham KN, Fernandez-Lima F. Structural Characterization of Human Histone H4.1 by Tandem Nonlinear and Linear Ion Mobility Spectrometry Complemented with Molecular Dynamics Simulations. ACS OMEGA 2021; 6:29567-29576. [PMID: 34778628 PMCID: PMC8582071 DOI: 10.1021/acsomega.1c03744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Extracellular histone H4 is an attractive drug target owing to its roles in organ failure in sepsis and other diseases. To identify inhibitors using in silico methods, information on histone H4 structural dynamics and three-dimensional (3D) structural coordinates is required. Here, DNA-free histone H4 type 1 (H4.1) was characterized by utilizing tandem nonlinear and linear ion mobility spectrometry (FAIMS-TIMS) coupled to mass spectrometry (MS) complemented with molecular dynamics (MD) simulations. The gas-phase structures of H4.1 are dependent on the starting solution conditions, evidenced by differences in charge state distributions, mobility distributions, and collision-induced unfolding (CIU) pathways. The experimental results show that H4.1 adopts diverse conformational types from compact (C) to partially folded (P) and subsequently elongated (E) structures. Molecular dynamics simulations provided candidate structures for the histone H4.1 monomer in solution and for the gas-phase structures observed using FAIMS-IMS-TOF MS as a function of the charge state and mobility distribution. A combination of the FAIMS-TIMS experimental results with theoretical dipole calculations reveals the important role of charge distribution in the dipole alignment of H4.1 elongated structures at high electric fields. A comparison of the secondary and primary structures of DNA-free H2A.1 and H4.1 is made based on the experimental IMS-MS and MD findings.
Collapse
Affiliation(s)
- Khoa N. Pham
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
- Biomolecular
Science Institute, Florida International
University, Miami, Florida 33199, United
States
| |
Collapse
|
8
|
Pham KN, Mamun Y, Fernandez-Lima F. Structural Heterogeneity of Human Histone H2A.1. J Phys Chem B 2021; 125:4977-4986. [PMID: 33974801 PMCID: PMC8568062 DOI: 10.1021/acs.jpcb.1c00335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Histones are highly basic chromatin proteins that tightly package and order eukaryotic DNA into nucleosomes. While the atomic structure of the nucleosomes has been determined, the three-dimensional structure of DNA-free histones remains unresolved. Here, we combine tandem nonlinear and linear ion mobility spectrometry (FAIMS-TIMS) coupled to mass spectrometry in parallel with molecular modeling to study the conformational space of a DNA-free histone H2A type 1 (H2A.1). Experimental results showed the dependence of the gas-phase structures on the starting solution conditions, characterized by charge state distributions, mobility distributions, and collision-induced-unfolding pathways. The measured H2A.1 gas-phase structures showed a high diversity of structural features ranging from compact (C) to partially folded (P) and then highly elongated (E) conformations. Molecular dynamics simulations provided candidate structures for the solution H2A.1 native conformation with folded N- and C-terminal tails, as well as gas-phase candidate structures associated with the mobility trends. Complementary collision cross section and dipole calculations showed that the charge distribution in the case of elongated gas-phase structures, where basic and acidic residues are mostly exposed (e.g., z > 15+), is sufficient to induce differences in the dipole alignment at high electric fields, in good agreement with the trends observed during the FAIMS-TIMS experiments.
Collapse
Affiliation(s)
- Khoa N Pham
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Yasir Mamun
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States.,Biomolecular Science Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
9
|
Jeanne Dit Fouque K, Fernandez-Lima F. Following Structural Changes by Thermal Denaturation Using Trapped Ion Mobility Spectrometry-Mass Spectrometry. J Phys Chem B 2020; 124:6257-6265. [PMID: 32560586 PMCID: PMC8341290 DOI: 10.1021/acs.jpcb.0c04276] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The behavior of biomolecules as a function of the solution temperature is often crucial to assessing their biological activity and function. While heat-induced changes of biomolecules are traditionally monitored using optical spectroscopy methods, their conformational changes and unfolding transitions remain challenging to interpret. In the present work, the structural transitions of bovine serum albumin (BSA) in native conditions (100 mM aqueous ammonium acetate) were investigated as a function of the starting solution temperature (T ∼ 23-70 °C) using a temperature-controlled nanoelectrospray ionization source (nESI) coupled to a trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) instrument. The charge state distribution of the monomeric BSA changed from a native-like, narrow charge state ([M + 12H]12+ to [M + 16H]16+ at ∼23 °C) and narrow mobility distribution toward an unfolded-like, broad charge state (up to [M + 46H]46+ at ∼70 °C) and broad mobility distribution. Inspection of the average charge state and collision cross section (CCS) distribution suggested a two-state unfolding transition with a melting temperature Tm ∼ 56 ± 1 °C; however, the inspection of the CCS profiles at the charge state level as a function of the solution temperature showcases at least six structural transitions (T1-T7). If the starting solution concentration is slightly increased (from 2 to 25 μM), this method can detect nonspecific BSA dimers and trimers which dissociate early (Td ∼ 34 ± 1 °C) and may disturb the melting curve of the BSA monomer. In a single experiment, this technology provides a detailed view of the solution, protein structural landscape (mobility vs solution temperature vs relative intensity for each charge state).
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|