1
|
Gao J, Sato H. Study on the Brill transition of polyamide 6 with different crystal forms using low- and high-frequency Raman spectroscopy. RSC Adv 2025; 15:2224-2230. [PMID: 39850083 PMCID: PMC11755107 DOI: 10.1039/d4ra08523j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/14/2025] [Indexed: 01/25/2025] Open
Abstract
Polyamide 6 (PA6) in its α and γ-forms was studied from 30 to 220 °C using Raman spectroscopy in the low- and high-wavenumber regions. Quantum chemical calculations were employed to assist with band assignments. In the low-wavenumber region, a peak at approximately 100 cm-1, attributable to a mixed mode of methylene lateral motion and amide group stretching, was observed. Additionally, a new band at approximately 60 cm-1 was observed and assigned to molecular chain torsions in the α-form. Both bands indicated that molecular chain rotation occurs prior to the Brill transition at approximately 130 °C. In the high-wavenumber region, bands at approximately 1126 cm-1 and 1060 cm-1 indicated a simultaneous weakening of C-C stretching modes in the trans conformation at the same temperature, consistent with observations in the low-wavenumber region.
Collapse
Affiliation(s)
- Jiacheng Gao
- Graduate School of Human Development and Environment, Kobe University 3-11, Tsurukabuto, Nada-ku Kobe Hyogo 657-0011 Japan
| | - Harumi Sato
- Graduate School of Human Development and Environment, Kobe University 3-11, Tsurukabuto, Nada-ku Kobe Hyogo 657-0011 Japan
| |
Collapse
|
2
|
Numata T, Ishikawa N, Shimada T, Gordon KC, Yamaguchi M. Low-Frequency Raman Spectroscopy on Amorphous Poly(Ether Ether Ketone) (PEEK). MATERIALS (BASEL, SWITZERLAND) 2024; 17:3755. [PMID: 39124421 PMCID: PMC11312796 DOI: 10.3390/ma17153755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
Low-frequency peaks in the Raman spectra of amorphous poly(ether ether ketone) (PEEK) were investigated. An amorphous sample with zero crystallinity, as confirmed by wide-angle X-ray diffraction, was used in this study. In a previous study, two peaks were observed in the low-frequency Raman spectra of the crystallized samples. Among these, the peaks at 135 cm-1 disappeared for the amorphous sample. Meanwhile, for the first time, the peak at 50 cm-1 was observed in the crystallized sample. Similar to the peak at 135 cm-1, the peak at 50 cm-1 disappeared in the amorphous state, and its intensity increased with increasing crystallinity. The origins of the two peaks were associated with the Ph-CO-Ph-type intermolecular vibrational modes in the simulation. This suggests that the Ph-CO-Ph vibrational mode observed in the low-frequency region of PEEK was strongly influenced by the intermolecular order.
Collapse
Affiliation(s)
- Tomoko Numata
- Department of Systems Design Engineering, Akita University, 1-1 Tegatagakuen-machi, Akita 010-8502, Japan;
- Horiba Techno Service Co., Ltd., Chiyoda-ku, Tokyo 101-0063, Japan
| | - Naomoto Ishikawa
- Kiguchi Technics Inc., 114-15 Enoshima-cho, Yasugi-shi 692-0057, Japan;
| | - Toshihiro Shimada
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan;
| | - Keith C. Gordon
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand;
| | - Makoto Yamaguchi
- Department of Systems Design Engineering, Akita University, 1-1 Tegatagakuen-machi, Akita 010-8502, Japan;
| |
Collapse
|
3
|
Ueno N, Sato H. Visualization of isothermal crystallization and phase separation in poly[(R)-3-hydroxybutyrate]/poly(L-lactic acid) by low-frequency Raman imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124052. [PMID: 38394883 DOI: 10.1016/j.saa.2024.124052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
The visualization of the variation of the inter/intra molecular interaction (C = O⋯CH3) between poly[(R)-3-hydroxybutyrate] (PHB) and poly-L-lactic acid (PLLA) in the PHB/PLLA miscible blend during phase separation and crystallization process was successfully investigated using Raman imaging. Images of the blend were developed using high- and low-frequency Raman spectra acquired during the isothermal crystallization of the blend, and both of them were compared. The low-frequency region allowed to observe the changes in the hydrogen bonds between the molecular chains in the blend during phase separation and crystallization via a band at 75 cm-1 derived from PHB. The imaging results obtained using the band at 75 cm-1 due to hydrogen bonding (C = O⋯CH3) between molecular chains were in good agreement with the results obtained using the C = O stretching band at 1720 cm-1. Herein, we demonstrated that the low-frequency region of the Raman spectrum is more sensitive to detecting the start of the phase separation and crystallization of PHB than the corresponding high-frequency region.
Collapse
Affiliation(s)
- Nami Ueno
- Graduate School of Human Development and Environment, Kobe University, Tsurukabuto, Nada-Ku, Kobe 657-8501, Japan
| | - Harumi Sato
- Graduate School of Human Development and Environment, Kobe University, Tsurukabuto, Nada-Ku, Kobe 657-8501, Japan; Molecular Photoscience Research Center, Kobe University, Rokkoudai, Nada-Ku, Kobe 657-8501, Japan.
| |
Collapse
|
4
|
Zhu Z, Bian Y, Zhang X, Zeng R, Yang B. Study on the crystallization behavior and conformation adjustment scale of poly(lactic acid) in the terahertz frequency range. Phys Chem Chem Phys 2023; 25:8472-8481. [PMID: 36883295 DOI: 10.1039/d3cp00208j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The observed properties of crystalline polymers are determined by their internal structure, which in turn is the result of their different crystallization behaviors. Here, we investigate the crystallization behavior of poly(lactic acid) (PLA) by terahertz time-domain spectroscopy (THz-TDS) at varied temperatures. We find that the changes in the chain packing and conformation of PLA are characterized by THz spectroscopy. Combining X-ray diffraction (XRD) and infrared spectroscopy (IR), we attributed the blue-shift of the THz peak to the tightness of the chain packing, while its absorption enhancement is caused by the conformation transition. The effects of chain packing and chain conformation on the characteristic peak are phased. Furthermore, absorption discontinuities of the characteristic peaks of PLA crystallized at different temperatures are observed, which originated from differences in the degree of conformational transition caused by different thermal energies. We find that the crystallization temperature at which the absorption mutation of PLA occurs corresponds to the temperature at which the motion of the segment and molecular chain is excited, respectively. At these two temperatures, PLA exhibits different scales of conformational transitions leading to stronger absorption and larger absorption changes at higher crystallization temperatures. The results demonstrate that the driving force of PLA crystallization is indeed from changes in chain packing and chain conformation, and the molecular motion scale can also be characterized by THz spectroscopy.
Collapse
Affiliation(s)
- Zhenqi Zhu
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Yujing Bian
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Xun Zhang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Ruonan Zeng
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Bin Yang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
5
|
Zhang L, Zheng Q, Ge X, Chan H, Zhang G, Fang K, Liang Y. Preparation of Nylon-6 micro-nanofiber composite membranes with 3D uniform gradient structure for high-efficiency air filtration of ultrafine particles. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Molecular Dynamics Simulation of Poly(Ether Ether Ketone) (PEEK) Polymer to Analyze Intermolecular Ordering by Low Wavenumber Raman Spectroscopy and X-ray Diffraction. Polymers (Basel) 2022; 14:polym14245406. [PMID: 36559773 PMCID: PMC9786246 DOI: 10.3390/polym14245406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Poly(ether ether ketone) (PEEK) is an important engineering plastic and evaluation of its local crystallinity in composites is critical for producing strong and reliable mechanical parts. Low wavenumber Raman spectroscopy and X-ray diffraction are promising techniques for the analysis of crystal ordering but a detailed understanding of the spectra has not been established. Here, we use molecular dynamics combined with a newly developed approximation to simulate local vibrational features to understand the effect of intermolecular ordering in the Raman spectra. We found that intermolecular ordering does affect the low wavenumber Raman spectra and the X-ray diffraction as observed in the experiment. Raman spectroscopy of intermolecular vibration modes is a promising technique to evaluate the local crystallinity of PEEK and other engineering plastics, and the present technique offers an estimation without requiring heavy computational resources.
Collapse
|
7
|
Zhu Z, Bian Y, Zhang X, Zeng R, Yang B. Study of Crystallinity and Conformation of Poly(lactic acid) by Terahertz Spectroscopy. Anal Chem 2022; 94:11104-11111. [PMID: 35881498 DOI: 10.1021/acs.analchem.2c02652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During crystallization, conformational changes are often accompanied by the formation of interactions. Terahertz (THz) spectroscopy exhibits strong responses to the crystalline poly(lactic acid) (PLA). Therefore, we estimate the relative crystallinity and investigate the effect of conformational transition on the vibration of PLA by THz spectroscopy. By comparing with the results of X-ray diffraction (XRD) and differential scanning calorimetry (DSC), the validity of THz spectroscopy to calculate crystallinity is verified. Furthermore, the peak intensity of PLA at 2.01 THz increases with crystallinity. Combined with Fourier transform infrared spectroscopy (FTIR), the vibrational intensity of PLA at 2.01 THz is highly correlated with the contribution of gt conformation, showing a linear relationship. In addition, the vibrational peak of PLA also reflects the interchain interactions. We believe that the increase in peak intensity with increasing crystallinity originates from the effect of the dipole-dipole interactions between the carbonyl groups. Our study demonstrates the ability of THz spectroscopy to estimate the crystallinity of PLA, and the peak at 2.01 THz shows conformational and interaction sensitivities.
Collapse
Affiliation(s)
- Zhenqi Zhu
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Yujing Bian
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Xun Zhang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Ruonan Zeng
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Bin Yang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.,Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
8
|
Yamaguchi M, Kobayasi S, Numata T, Kamihara N, Shimda T, Jikei M, Muraoka M, Barnsley JE, Fraser‐Miller SJ, Gordon KC. Evaluation of crystallinity in carbon fiber‐reinforced poly(ether ether ketone) by using infrared low frequency Raman spectroscopy. J Appl Polym Sci 2022. [DOI: 10.1002/app.51677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Makoto Yamaguchi
- Department of Systems Design Engineering Akita University Akita Japan
| | - Shoko Kobayasi
- Department of Systems Design Engineering Akita University Akita Japan
| | - Tomoko Numata
- Department of Systems Design Engineering Akita University Akita Japan
- Analytical Technology Division Horiba Techno Service CO. LTD Chiyoda‐ku Tokyo Japan
| | - Nobuyuki Kamihara
- Department of Systems Design Engineering Akita University Akita Japan
- Research & Innovation Center Mitsubishi Heavy Industries Nagasaki Japan
| | - Toshihiro Shimda
- Division of Applied Chemistry, Faculty of Engineering Hokkaido University Sapporo Hokkaido Japan
| | - Mitsutoshi Jikei
- Department of Systems Design Engineering Akita University Akita Japan
| | - Mikio Muraoka
- Department of Systems Design Engineering Akita University Akita Japan
| | | | | | - Keith C. Gordon
- Department of Chemistry University of Otago Dunedin New Zealand
| |
Collapse
|
9
|
Park HS, Kang YK. Exploring Helical Folding in Oligomers of Cyclopentane-Based ϵ-Amino Acids: A Computational Study. Chemistry 2022; 11:e202100253. [PMID: 35083888 PMCID: PMC8886640 DOI: 10.1002/open.202100253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Indexed: 11/28/2022]
Abstract
The conformational preferences of oligopeptides of an ϵ‐amino acid (2‐((1R,3S)‐3‐(aminomethyl)cyclopentyl)acetic acid, Amc5a) with a cyclopentane substituent in the Cβ−Cγ−Cδ sequence of the backbone were investigated using DFT methods in chloroform and water. The most preferred conformation of Amc5a oligomers (dimer to hexamer) was the H16 helical structure both in chloroform and water. Four residues were found to be sufficient to induce a substantial H16 helix population in solution. The Amc5a hexamer adopted a stable left‐handed (M)‐2.316 helical conformation with a rise of 4.8 Å per turn. The hexamer of Ampa (an analogue of Amc5a with replacing cyclopentane by pyrrolidine) adopted the right‐handed mixed (P)‐2.918/16 helical conformation in chloroform and the (M)‐2.416 helical conformation in water. Therefore, hexamers of ϵ‐amino acid residues exhibited different preferences of helical structures depending on the substituents in peptide backbone and the solvent polarity as well as the chain length.
Collapse
Affiliation(s)
- Hae Sook Park
- Department of Nursing, Cheju Halla University, Cheju, 63092, Republic of Korea
| | - Young Kee Kang
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| |
Collapse
|
10
|
Yamamoto S, Ishiro S, Kessler J, Bouř P. Intense chiral signal from α-helical poly-L-alanine observed in low-frequency Raman optical activity. Phys Chem Chem Phys 2021; 23:26501-26509. [PMID: 34806737 DOI: 10.1039/d1cp04401j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Raman optical activity (ROA) spectral features reliably indicate the structure of peptides and proteins, but the signal is often weak. However, we observed significantly enhanced low-frequency bands for α-helical poly-L-alanine (PLA) in solution. The biggest ROA signal at ∼100 cm-1 is about 10 times stronger than higher-frequency bands described previously, which facilitates the detection. The low-frequency bands of PLA were compared to those of α-helical proteins. For PLA, density functional simulations well reproduced the experimental spectra and revealed that about 12 alanine residues within two turns of the α-helix generate the strong ROA band. Averaging based on molecular dynamics (MD) provided an even more realistic spectrum compared to the static model. The low-frequency bands could be largely related to a collective motion of the α-helical backbone, partially modulated by the solvent. Helical and intermolecular vibrational coordinates have been introduced and the helical unwinding modes were assigned to the strongest ROA signal at 101-128 cm-1. Further analysis indicated that the helically arranged amide and methyl groups are important for the strong chiral signal of PLA, while the local chiral centers CαH contribute in a minor way only. The strong low-frequency ROA can thus provide precious information about the motions of the peptide backbone and facilitate future protein studies.
Collapse
Affiliation(s)
- Shigeki Yamamoto
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka 560-0043, Japan.
| | - Shota Ishiro
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka 560-0043, Japan.
| | - Jiří Kessler
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic.
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic.
| |
Collapse
|
11
|
Ozaki Y, Beć KB, Morisawa Y, Yamamoto S, Tanabe I, Huck CW, Hofer TS. Advances, challenges and perspectives of quantum chemical approaches in molecular spectroscopy of the condensed phase. Chem Soc Rev 2021; 50:10917-10954. [PMID: 34382961 DOI: 10.1039/d0cs01602k] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose of this review is to demonstrate advances, challenges and perspectives of quantum chemical approaches in molecular spectroscopy of the condensed phase. Molecular spectroscopy, particularly vibrational spectroscopy and electronic spectroscopy, has been used extensively for a wide range of areas of chemical sciences and materials science as well as nano- and biosciences because it provides valuable information about structure, functions, and reactions of molecules. In the meantime, quantum chemical approaches play crucial roles in the spectral analysis. They also yield important knowledge about molecular and electronic structures as well as electronic transitions. The combination of spectroscopic approaches and quantum chemical calculations is a powerful tool for science, in general. Thus, our article, which treats various spectroscopy and quantum chemical approaches, should have strong implications in the wider scientific community. This review covers a wide area of molecular spectroscopy from far-ultraviolet (FUV, 120-200 nm) to far-infrared (FIR, 400-10 cm-1)/terahertz and Raman spectroscopy. As quantum chemical approaches, we introduce several anharmonic approaches such as vibrational self-consistent field (VSCF) and the combination of periodic harmonic calculations with anharmonic corrections based on finite models, grid-based techniques like the Numerov approach, the Cartesian coordinate tensor transfer (CCT) method, Symmetry-Adapted Cluster Configuration-Interaction (SAC-CI), and the ZINDO (Semi-empirical calculations at Zerner's Intermediate Neglect of Differential Overlap). One can use anharmonic approaches and grid-based approaches for both infrared (IR) and near-infrared (NIR) spectroscopy, while CCT methods are employed for Raman, Raman optical activity (ROA), FIR/terahertz and low-frequency Raman spectroscopy. Therefore, this review overviews cross relations between molecular spectroscopy and quantum chemical approaches, and provides various kinds of close-reality advanced spectral simulation for condensed phases.
Collapse
Affiliation(s)
- Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan. and Toyota Physical and Chemical Research Institute, Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Yusuke Morisawa
- Department of Chemistry, School of Science and Engineering, Kindai University, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Shigeki Yamamoto
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ichiro Tanabe
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Thomas S Hofer
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, A6020 Innsbruck, Austria
| |
Collapse
|
12
|
Wang Y, Zhu P, Qian C, Zhao Y, Wang L, Wang D, Dong X. The Brill Transition in Long-Chain Aliphatic Polyamide 1012: The Role of Hydrogen-Bonding Organization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- CAS Key Laboratory of Engineer Plastics, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Zhu
- CAS Key Laboratory of Engineer Plastics, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chengao Qian
- CAS Key Laboratory of Engineer Plastics, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhao
- CAS Key Laboratory of Engineer Plastics, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dujin Wang
- CAS Key Laboratory of Engineer Plastics, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Dong
- CAS Key Laboratory of Engineer Plastics, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Ozaki Y. Infrared Spectroscopy-Mid-infrared, Near-infrared, and Far-infrared/Terahertz Spectroscopy. ANAL SCI 2021; 37:1193-1212. [PMID: 33612556 DOI: 10.2116/analsci.20r008] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This article aims to overview infrared (IR) spectroscopy. Simultaneously, it outlines mid-infrared (MIR), near-infrared (NIR), and far-infrared (FIR) or terahertz (THz) spectroscopy separately, and compares them in terms of principles, characteristics, advantages, and applications. MIR spectroscopy is the central spectroscopic technique in the IR region, and is mainly concerned with the fundamentals of molecular vibrations. NIR spectroscopy incorporates both electronic and vibrational spectroscopy; however, in this review, I have chiefly discussed vibrational NIR spectroscopy, where bands due to overtones and combination modes appear. FIR or THz spectroscopy contains both vibrational and rotational spectroscopy. However, only vibrational FIR or THz spectroscopy has been discussed in this review. These three spectroscopy cover wide areas in their applications, making it rather difficult to describe these various topics simultaneously. Hence, I have selected three key topics: hydrogen bond studies, applications of quantum chemical calculations, and imaging. The perspective of the three spectroscopy has been discussed in the last section.
Collapse
Affiliation(s)
- Yukihiro Ozaki
- School of Science and Technology, Kwansei Gakuin University.,Toyota Physical and Chemical Research Institute
| |
Collapse
|
14
|
Yamamoto Y, Hoshina H, Sato H. Differences in Intermolecular Interactions and Flexibility between Poly(ethylene terephthalate) and Poly(butylene terephthalate) Studied by Far-Infrared/Terahertz and Low-Frequency Raman Spectroscopy. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yumiko Yamamoto
- Graduate School of Human Development and Environment, Kobe University, Tsurukabuto 3-11, Nada, Kobe 657-8501 Japan
| | - Hiromichi Hoshina
- RIKEN Center for Advanced Photonics, 519-1399 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-0845, Japan
| | - Harumi Sato
- Graduate School of Human Development and Environment, Kobe University, Tsurukabuto 3-11, Nada, Kobe 657-8501 Japan
- Molecular Photoscience Research Center, Kobe University, Rokkodaicho1-1,
Nada, Kobe 657-8501, Japan
| |
Collapse
|
15
|
Physicochemical and Mechanical Performance of Freestanding Boron-Doped Diamond Nanosheets Coated with C:H:N:O Plasma Polymer. MATERIALS 2020; 13:ma13081861. [PMID: 32326555 PMCID: PMC7215835 DOI: 10.3390/ma13081861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 01/22/2023]
Abstract
The physicochemical and mechanical properties of thin and freestanding heavy boron-doped diamond (BDD) nanosheets coated with a thin C:H:N:O plasma polymer were studied. First, diamond nanosheets were grown and doped with boron on a Ta substrate using the microwave plasma-enhanced chemical vapor deposition technique (MPECVD). Next, the BDD/Ta samples were covered with nylon 6.6 to improve their stability in harsh environments and flexibility during elastic deformations. Plasma polymer films with a thickness of the 500–1000 nm were obtained by magnetron sputtering of a bulk target of nylon 6.6. Hydrophilic nitrogen-rich C:H:N:O was prepared by the sputtering of nylon 6.6. C:H:N:O as a film with high surface energy improves adhesion in ambient conditions. The nylon–diamond interface was perfectly formed, and hence, the adhesion behavior could be attributed to the dissipation of viscoelastic energy originating from irreversible energy loss in soft polymer structure. Diamond surface heterogeneities have been shown to pin the contact edge, indicating that the retraction process causes instantaneous fluctuations on the surface in specified microscale regions. The observed Raman bands at 390, 275, and 220 cm−1 were weak; therefore, the obtained films exhibited a low level of nylon 6 polymerization and short-distance arrangement, indicating crystal symmetry and interchain interactions. The mechanical properties of the nylon-on-diamond were determined by a nanoindentation test in multiload mode. Increasing the maximum load during the nanoindentation test resulted in a decreased hardness of the fabricated structure. The integration of freestanding diamond nanosheets will make it possible to design flexible chemical multielectrode sensors.
Collapse
|