1
|
Pandey V, Kennedy JF, Raghav N. Falcipain-2: A review on structurally diverse non-peptide inhibitors. Int J Biol Macromol 2025; 309:142817. [PMID: 40187465 DOI: 10.1016/j.ijbiomac.2025.142817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/30/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
The lack of a credible malaria vaccine for patients of all age group, the emergence and spread of parasites resistant to most of the clinically used antimalarial drugs and drug combination have aroused an imperative requirement to develop new drugs against malaria. The targeting of causal parasite Plasmodium falciparum's cysteine proteases involved in hemoglobin degradation, especially Falcipain-2 (FP-2) with small molecules inhibitors is one of the promising approaches for antimalarial chemotherapy. In the present review article, emphasis is given on rational and computational approaches used for developing promising non-peptidic inhibitors of FP-2. This review would be useful to researchers involved in the development of small molecule drug design strategies to target the Plasmodium falciparum cysteine protease, FP-2.
Collapse
Affiliation(s)
- Vandana Pandey
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - J F Kennedy
- Chembiotech Laboratories Ltd, Tenbury Wells, United Kingdom
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India.
| |
Collapse
|
2
|
González JEH, Salas-Sarduy E, Alvarez LH, Valiente PA, Arni RK, Pascutti PG. Three Decades of Targeting Falcipains to Develop Antiplasmodial Agents: What have we Learned and What can be Done Next? Curr Med Chem 2024; 31:2234-2263. [PMID: 37711130 DOI: 10.2174/0929867331666230913165219] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/06/2023] [Accepted: 07/25/2023] [Indexed: 09/16/2023]
Abstract
Malaria is a devastating infectious disease that affects large swathes of human populations across the planet's tropical regions. It is caused by parasites of the genus Plasmodium, with Plasmodium falciparum being responsible for the most lethal form of the disease. During the intraerythrocytic stage in the human hosts, malaria parasites multiply and degrade hemoglobin (Hb) using a battery of proteases, which include two cysteine proteases, falcipains 2 and 3 (FP-2 and FP-3). Due to their role as major hemoglobinases, FP-2 and FP-3 have been targeted in studies aiming to discover new antimalarials and numerous inhibitors with activity against these enzymes, and parasites in culture have been identified. Nonetheless, cross-inhibition of human cysteine cathepsins remains a serious hurdle to overcome for these compounds to be used clinically. In this article, we have reviewed key functional and structural properties of FP-2/3 and described different compound series reported as inhibitors of these proteases during decades of active research in the field. Special attention is also paid to the wide range of computer-aided drug design (CADD) techniques successfully applied to discover new active compounds. Finally, we provide guidelines that, in our understanding, will help advance the rational discovery of new FP-2/3 inhibitors.
Collapse
Affiliation(s)
- Jorge Enrique Hernández González
- Multiuser Center for Biomolecular Innovation, IBILCE/UNESP, São José do Rio Preto, SP, Brazil
- Department of Pharmaceutical Sciences, UZA II, University of Vienna, Vienna, 1090, Austria
| | - Emir Salas-Sarduy
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo Ugalde, Universidad Nacional de San Martín, CONICET, San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnología (EByN), Universidad de San Martín (UNSAM), San Martín, Buenos Aires, Argentina
| | | | - Pedro Alberto Valiente
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
| | | | - Pedro Geraldo Pascutti
- Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Govindaraj RG, Thangapandian S, Schauperl M, Denny RA, Diller DJ. Recent applications of computational methods to allosteric drug discovery. Front Mol Biosci 2023; 9:1070328. [PMID: 36710877 PMCID: PMC9877542 DOI: 10.3389/fmolb.2022.1070328] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023] Open
Abstract
Interest in exploiting allosteric sites for the development of new therapeutics has grown considerably over the last two decades. The chief driving force behind the interest in allostery for drug discovery stems from the fact that in comparison to orthosteric sites, allosteric sites are less conserved across a protein family, thereby offering greater opportunity for selectivity and ultimately tolerability. While there is significant overlap between structure-based drug design for orthosteric and allosteric sites, allosteric sites offer additional challenges mostly involving the need to better understand protein flexibility and its relationship to protein function. Here we examine the extent to which structure-based drug design is impacting allosteric drug design by highlighting several targets across a variety of target classes.
Collapse
Affiliation(s)
- Rajiv Gandhi Govindaraj
- Computational Chemistry, HotSpot Therapeutics Inc., Boston, MA, United States,*Correspondence: Rajiv Gandhi Govindaraj,
| | | | - Michael Schauperl
- Computational Chemistry, HotSpot Therapeutics Inc., Boston, MA, United States
| | | | - David J. Diller
- Computational Chemistry, HotSpot Therapeutics Inc., Boston, MA, United States
| |
Collapse
|
4
|
Staphylococcus aureus Exfoliative Toxin E, Oligomeric State and Flip of P186: Implications for Its Action Mechanism. Int J Mol Sci 2022; 23:ijms23179857. [PMID: 36077258 PMCID: PMC9456352 DOI: 10.3390/ijms23179857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Staphylococcal exfoliative toxins (ETs) are glutamyl endopeptidases that specifically cleave the Glu381-Gly382 bond in the ectodomains of desmoglein 1 (Dsg1) via complex action mechanisms. To date, four ETs have been identified in different Staphylococcus aureus strains and ETE is the most recently characterized. The unusual properties of ETs have been attributed to a unique structural feature, i.e., the 180° flip of the carbonyl oxygen (O) of the nonconserved residue 192/186 (ETA/ETE numbering), not conducive to the oxyanion hole formation. We report the crystal structure of ETE determined at 1.61 Å resolution, in which P186(O) adopts two conformations displaying a 180° rotation. This finding, together with free energy calculations, supports the existence of a dynamic transition between the conformations under the tested conditions. Moreover, enzymatic assays showed no significant differences in the esterolytic efficiency of ETE and ETE/P186G, a mutant predicted to possess a functional oxyanion hole, thus downplaying the influence of the flip on the activity. Finally, we observed the formation of ETE homodimers in solution and the predicted homodimeric structure revealed the participation of a characteristic nonconserved loop in the interface and the partial occlusion of the protein active site, suggesting that monomerization is required for enzymatic activity.
Collapse
|
5
|
Li L, Dong X, Tang Y, Lao Z, Li X, Lei J, Wei G. Deciphering the mechanisms of HPV E6 mutations in the destabilization of E6/E6AP/p53 complex. Biophys J 2022; 121:1704-1714. [PMID: 35364103 PMCID: PMC9117921 DOI: 10.1016/j.bpj.2022.03.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/13/2021] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
In epithelial tumors, oncoprotein E6 binds with the ubiquitin ligase E6AP to form E6/E6AP heterodimer; then this heterodimer recruits p53 to form E6/E6AP/p53 heterotrimer and induces p53 degradation. Recent experiments demonstrated that three E6 single-site mutants (F47R, R102A, and L50E) can inhibit the E6/E6AP/p53 heterotrimer formation and rescue p53 from the degradation pathway. However, the molecular mechanism underlying mutation-induced heterotrimer inhibition remains largely elusive. Herein, we performed extensive molecular dynamics simulations (totally ∼13 μs) on both heterodimer and heterotrimer to elucidate at an atomic level how each p53-degradation-defective HPV16 E6 mutant reduces the structural stabilities of the two complexes. Our simulations reveal that the three E6 mutations destabilize the structure of E6/E6AP/p53 complex through distinct mechanisms. Although F47RE6 mutation has no effect on the structure of E6/E6AP heterodimer, it results in an electrostatic repulsion between R47E6 and R290p53, which is unfavorable for E6-p53 binding. R102AE6 mutation destabilizes the structure of E6/E6AP heterodimer and significantly disrupts hydrophobic and cation-π interactions between F47E6 and E286p53/L298p53/R290p53. L50EE6 mutation impairs both E6 interdomain interactions (especially F47-K108 cation-π interaction) and E6-E6AP intermolecular interactions important for the stabilization of E6/E6AP heterodimer. This study identifies the intra- and intermolecular interactions crucial for the complex stability, which may provide mechanistic insights into the inhibition of complex formation by the three HPV16 E6 mutations.
Collapse
Affiliation(s)
- Le Li
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China
| | - Xuewei Dong
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China
| | - Zenghui Lao
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, China
| | - Jiangtao Lei
- Institute of Space Science and Technology, Nanchang University, Xuefu Avenue 999, Nanchang City, China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Indari O, Sk MF, Jakhmola S, Jonniya NA, Jha HC, Kar P. Decoding the Host-Parasite Protein Interactions Involved in Cerebral Malaria Through Glares of Molecular Dynamics Simulations. J Phys Chem B 2022; 126:387-402. [PMID: 34989590 DOI: 10.1021/acs.jpcb.1c07850] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malaria causes millions of deaths every year. The malaria parasite spends a substantial part of its life cycle inside human erythrocytes. Inside erythrocytes, it synthesizes and displays various proteins onto the erythrocyte surface, such as Plasmodium falciparum erythrocytic membrane protein-1 (PfEMP1). This protein contains cysteine-rich interdomain region (CIDR) domains which have many subtypes based on sequence diversity and can cross-talk with host molecules. The CIDRα1.4 subtype can attach host endothelial protein C receptor (EPCR). This interaction facilitates infected erythrocyte adherence to brain endothelium and subsequent development of cerebral malaria. Through molecular dynamics simulations in conjunction with the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) method, we explored the mechanism of interaction in the CIDRα1-EPCR complex. We examined the structural behavior of two CIDRα1 molecules (encoded by HB3-isolate var03-gene and IT4-isolate var07-gene) with EPCR unbound and bound (complex) forms. HB3var03CIDRα1 in apo and complexed with EPCR was comparatively more stable than IT4var07CIDRα1. Both of the complexes adopted two distinct conformational energy states. The hydrophobic residues played a crucial role in the binding of both complexes. For HB3var03CIDRα1-EPCR, the dominant energetic components were total polar interactions, while in IT4var07CIDRα1-EPCR, the primary interaction was van der Waals and nonpolar solvation energy. The study also revealed details such as correlated conformational motions and secondary structure evolution. Further, it elucidated various hotspot residues involved in protein-protein recognition. Overall, our study provides additional information on the structural behavior of CIDR molecules in unbound and receptor-bound states, which will help to design potent inhibitors.
Collapse
Affiliation(s)
- Omkar Indari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, MP 453552, India
| | - Md Fulbabu Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, MP 453552, India
| | - Shweta Jakhmola
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, MP 453552, India
| | - Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, MP 453552, India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, MP 453552, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, MP 453552, India
| |
Collapse
|
7
|
Hernández González JE, Alberca LN, Masforrol González Y, Reyes Acosta O, Talevi A, Salas-Sarduy E. Tetracycline Derivatives Inhibit Plasmodial Cysteine Protease Falcipain-2 through Binding to a Distal Allosteric Site. J Chem Inf Model 2021; 62:159-175. [PMID: 34962803 DOI: 10.1021/acs.jcim.1c01189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Allosteric inhibitors regulate enzyme activity from remote and usually specific pockets. As they promise an avenue for less toxic and safer drugs, the identification and characterization of allosteric inhibitors has gained great academic and biomedical interest in recent years. Research on falcipain-2 (FP-2), the major papain-like cysteine hemoglobinase of Plasmodium falciparum, might benefit from this strategy to overcome the low selectivity against human cathepsins shown by active site-directed inhibitors. Encouraged by our previous finding that methacycline inhibits FP-2 noncompetitively, here we assessed other five tetracycline derivatives against this target and characterized their inhibition mechanism. As previously shown for methacycline, tetracycline derivatives inhibited FP-2 in a noncompetitive fashion, with Ki values ranging from 121 to 190 μM. A possible binding to the S' side of the FP-2 active site, similar to that described by X-ray crystallography (PDB: 6SSZ) for the noncompetitive inhibitor E-chalcone 48 (EC48), was experimentally discarded by kinetic analysis using a large peptidyl substrate spanning the whole active site. By combining lengthy molecular dynamics (MD) simulations that allowed methacycline to diffuse from solution to different FP-2 surface regions and free energy calculations, we predicted the most likely binding mode of the ligand. Of note, the proposed binding pose explains the low differences in Ki values observed for the tested tetracycline derivatives and the calculated binding free energies match the experimental values. Overall, this study has implications for the design of novel allosteric inhibitors against FP-2 and sets the basis for further optimization of the tetracycline scaffold to produce more potent and selective inhibitors.
Collapse
Affiliation(s)
- Jorge Enrique Hernández González
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo CEP 15054-000, Brazil
| | - Lucas N Alberca
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Exact Sciences College, Universidad Nacional de La Plata, La Plata B1900ADU, Argentina
| | | | - Osvaldo Reyes Acosta
- Chemistry and Physics Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba
| | - Alan Talevi
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Exact Sciences College, Universidad Nacional de La Plata, La Plata B1900ADU, Argentina
| | - Emir Salas-Sarduy
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo Ugalde"─Universidad Nacional de San Martín─CONICET, San Martín B1650HMP, Buenos Aires, Argentina
| |
Collapse
|
8
|
Hernández González JE, Salas-Sarduy E, Hernández Alvarez L, Barreto Gomes DE, Pascutti PG, Oostenbrink C, Leite VBP. In silico identification of noncompetitive inhibitors targeting an uncharacterized allosteric site of falcipain-2. J Comput Aided Mol Des 2021; 35:1067-1079. [PMID: 34617191 DOI: 10.1007/s10822-021-00420-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/24/2021] [Indexed: 01/05/2023]
Abstract
Falcipain-2 (FP-2) is a Plasmodium falciparum hemoglobinase widely targeted in the search for antimalarials. FP-2 can be allosterically modulated by various noncompetitive inhibitors that have been serendipitously identified. Moreover, the crystal structures of two inhibitors bound to an allosteric site, termed site 6, of the homolog enzyme human cathepsin K (hCatK) suggest that the equivalent region in FP-2 might play a similar role. Here, we conduct the rational identification of FP-2 inhibitors through virtual screenings (VS) of compounds into several pocket-like conformations of site 6, sampled during molecular dynamics (MD) simulations of the free enzyme. Two noncompetitive inhibitors, ZINC03225317 and ZINC72290660, were confirmed using in vitro enzymatic assays and their poses into site 6 led to calculated binding free energies matching the experimental ones. Our results provide strong evidence about the allosteric inhibition of FP-2 through binding of small molecules to site 6, thus opening the way toward the discovery of new inhibitors against this enzyme.
Collapse
Affiliation(s)
- Jorge Enrique Hernández González
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas - Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rua Cristóvão Colombo 2265, Jardim Nazareth, São José do Rio Preto, SP, CEP 15054-000, Brazil. .,Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofı́sica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ave. Carlos Chagas Filho - Universidade Federal do Rio de Janeiro (UFRJ), Ave. Carlos Chagas Filho, 373, CCS-Bloco D sala 30, Cidade Universitária Ilha de Fundão, Rio de Janeiro, RJ, CEP 21941-902, Brazil. .,Institute for Molecular Modeling and Simulation, Department for Material Sciences and Process Engineering - University of Natural Resources and Life Sciences (BOKU), Vienna, Muthgasse 18, 1190, Vienna, Austria.
| | - Emir Salas-Sarduy
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo Ugalde, Universidad Nacional de San Martín, CONICET, San Martín, Buenos Aires, Argentina
| | - Lilian Hernández Alvarez
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas - Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rua Cristóvão Colombo 2265, Jardim Nazareth, São José do Rio Preto, SP, CEP 15054-000, Brazil
| | - Diego Enry Barreto Gomes
- Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofı́sica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ave. Carlos Chagas Filho - Universidade Federal do Rio de Janeiro (UFRJ), Ave. Carlos Chagas Filho, 373, CCS-Bloco D sala 30, Cidade Universitária Ilha de Fundão, Rio de Janeiro, RJ, CEP 21941-902, Brazil.,Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora (UFJF), Rua José Lourenço Kelmer, s/n - Campus Universitário, Bairro São Pedro, Juiz de Fora, MG, CEP 36036-900, Brazil
| | - Pedro Geraldo Pascutti
- Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofı́sica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ave. Carlos Chagas Filho - Universidade Federal do Rio de Janeiro (UFRJ), Ave. Carlos Chagas Filho, 373, CCS-Bloco D sala 30, Cidade Universitária Ilha de Fundão, Rio de Janeiro, RJ, CEP 21941-902, Brazil
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, Department for Material Sciences and Process Engineering - University of Natural Resources and Life Sciences (BOKU), Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Vitor B P Leite
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas - Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rua Cristóvão Colombo 2265, Jardim Nazareth, São José do Rio Preto, SP, CEP 15054-000, Brazil
| |
Collapse
|
9
|
Klauda JB. Virtual Issue on Docking. J Phys Chem B 2021; 125:5455-5457. [PMID: 34078077 DOI: 10.1021/acs.jpcb.1c03303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland
| |
Collapse
|
10
|
Hernández-Alvarez L, Oliveira AB, Hernández-González JE, Chahine J, Pascutti PG, de Araujo AS, de Souza FP. Computational study on the allosteric mechanism of Leishmania major IF4E-1 by 4E-interacting protein-1: Unravelling the determinants of m 7GTP cap recognition. Comput Struct Biotechnol J 2021; 19:2027-2044. [PMID: 33995900 PMCID: PMC8085901 DOI: 10.1016/j.csbj.2021.03.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
Atomistic details on perturbations induced by Lm4E-IP1 binding are described. The modulation of LmIF4E-1 affinity for the cap is confirmed by energetic analyses. Signaling paths between the allosteric and othosteric sites of LmIF4E-1 are predicted. Lm4E-IP1 binding increases the side-chain entropy of W83 and R172 of LmIF4E-1. A mechanism of dynamic allostery is proposed for the regulation mediated by Lm4E-IP1.
During their life cycle, Leishmania parasites display a fine-tuned regulation of the mRNA translation through the differential expression of isoforms of eukaryotic translation initiation factor 4E (LeishIF4Es). The interaction between allosteric modulators such as 4E-interacting proteins (4E-IPs) and LeishIF4E affects the affinity of this initiation factor for the mRNA cap. Here, several computational approaches were employed to elucidate the molecular bases of the previously-reported allosteric modulation in L. major exerted by 4E-IP1 (Lm4E-IP1) on eukaryotic translation initiation factor 4E 1 (LmIF4E-1). Molecular dynamics (MD) simulations and accurate binding free energy calculations (ΔGbind) were combined with network-based modeling of residue-residue correlations. We also describe the differences in internal motions of LmIF4E-1 apo form, cap-bound, and Lm4E-IP1-bound systems. Through community network calculations, the differences in the allosteric pathways of allosterically-inhibited and active forms of LmIF4E-1 were revealed. The ΔGbind values show significant differences between the active and inhibited systems, which are in agreement with the available experimental data. Our study thoroughly describes the dynamical perturbations of LmIF4E-1 cap-binding site triggered by Lm4E-IP1. These findings are not only essential for the understanding of a critical process of trypanosomatids’ gene expression but also for gaining insight into the allostery of eukaryotic IF4Es, which could be useful for structure-based design of drugs against this protein family.
Collapse
Affiliation(s)
- Lilian Hernández-Alvarez
- Department of Physics, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Julio de Mesquita Filho, São José do Rio Preto, São Paulo, Brazil
| | - Antonio B Oliveira
- Department of Physics, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Julio de Mesquita Filho, São José do Rio Preto, São Paulo, Brazil.,Center for Theoretical Biological Physics, Rice University, Huston, TX, United States
| | - Jorge Enrique Hernández-González
- Department of Physics, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Julio de Mesquita Filho, São José do Rio Preto, São Paulo, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge Chahine
- Department of Physics, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Julio de Mesquita Filho, São José do Rio Preto, São Paulo, Brazil
| | - Pedro Geraldo Pascutti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Suman de Araujo
- Department of Physics, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Julio de Mesquita Filho, São José do Rio Preto, São Paulo, Brazil
| | - Fátima Pereira de Souza
- Department of Physics, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Julio de Mesquita Filho, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
11
|
Hernández González JE, Hernández Alvarez L, Leite VBP, Pascutti PG. Water Bridges Play a Key Role in Affinity and Selectivity for Malarial Protease Falcipain-2. J Chem Inf Model 2020; 60:5499-5512. [PMID: 32634311 DOI: 10.1021/acs.jcim.0c00294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Falcipain-2 (FP-2) is hemoglobinase considered an attractive drug target of Plasmodium falciparum. Recently, it has been shown that peptidomimetic nitriles containing a 3-pyridyl (3Pyr) moiety at P2 display high affinity and selectivity for FP-2 with respect to human cysteine cathepsins (hCats), outperforming other P2-Pyr isomers and analogs. Further characterization demonstrated that certain P3 variants of these compounds possess micromolar inhibition of parasite growth in vitro and no cytotoxicity against human cell lines. However, the structural determinants underlying the selectivity of the 3Pyr-containing nitriles for FP-2 remain unknown. In this work, we conduct a thorough computational study combining MD simulations and free energy calculations to decipher the bases of the selectivity of the aforementioned nitriles. Our results reveal that water bridges involving the nitrogen and one carboxyl oxygen of I85 and D234 of FP-2, respectively, and the nitrogen of the neutral 3Pyr moiety, which are either less prevalent or nonexistent in the other complexes, explain the experimental activity profiles. The presence of crystallographic waters close to the bridging water positions in the studied proteases strongly supports the occurrence of such interactions. Overall, our findings suggest that selective FP-2 inhibitors can be designed by promoting water bridge formation at the bottom of the S2 subsite and/or by introducing complementary groups that displace the bridging water.
Collapse
Affiliation(s)
- Jorge Enrique Hernández González
- Departamento de Fı́sica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo CEP 15054-000, Brazil
| | - Lilian Hernández Alvarez
- Departamento de Fı́sica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo CEP 15054-000, Brazil.,Skaggs School of Pharmacy and Pharmaceutical Sciences, Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, California 92093, United States
| | - Vitor B P Leite
- Departamento de Fı́sica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo CEP 15054-000, Brazil
| | - Pedro Geraldo Pascutti
- Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofı́sica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ave. Carlos Chagas Filho, 373, CCS-Bloco D sala 30, Cidade Universitária Ilha de Fundão Rio de Janeiro, CEP 21941-902, Brazil
| |
Collapse
|
12
|
Rocha GV, Bastos LS, Costa MGS. Identification of potential allosteric binding sites in cathepsin K based on intramolecular communication. Proteins 2020; 88:1675-1687. [PMID: 32683717 DOI: 10.1002/prot.25985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/02/2020] [Accepted: 07/12/2020] [Indexed: 12/18/2022]
Abstract
Network theory methods and molecular dynamics (MD) simulations are accepted tools to study allosteric regulation. Indeed, dynamic networks built upon correlation analysis of MD trajectories provide detailed information about communication paths between distant sites. In this context, we aimed to understand whether the efficiency of intramolecular communication could be used to predict the allosteric potential of a given site. To this end, we performed MD simulations and network theory analyses in cathepsin K (catK), whose allosteric sites are well defined. To obtain a quantitative measure of the efficiency of communication, we designed a new protocol that enables the comparison between properties related to ensembles of communication paths obtained from different sites. Further, we applied our strategy to evaluate the allosteric potential of different catK cavities not yet considered for drug design. Our predictions of the allosteric potential based on intramolecular communication correlate well with previous catK experimental and theoretical data. We also discuss the possibility of applying our approach to other proteins from the same family.
Collapse
Affiliation(s)
- Gisele V Rocha
- Programa de Computação Científica, Vice-Presidência de Educação, Informação e Comunicação, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratoire de Biologie et de Pharmacologie Appliquée, Ecole Normale Supérieure Paris Saclay, Centre National de la Recherche Scientifique, Cachan, France
| | - Leonardo S Bastos
- Programa de Computação Científica, Vice-Presidência de Educação, Informação e Comunicação, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Department of Infectious Diseases Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Mauricio G S Costa
- Programa de Computação Científica, Vice-Presidência de Educação, Informação e Comunicação, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratoire de Biologie et de Pharmacologie Appliquée, Ecole Normale Supérieure Paris Saclay, Centre National de la Recherche Scientifique, Cachan, France
| |
Collapse
|
13
|
de Souza LG, Moraes PF, Leão RAC, Costa PRR, Soares RO, Pascutti PG, Figueroa-Villar JD, Rennó MN. Theoretical studies and NMR assay of coumarins and neoflavanones derivatives as potential inhibitors of acetylcholinesterase. Comput Biol Chem 2020; 87:107293. [PMID: 32559640 DOI: 10.1016/j.compbiolchem.2020.107293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 11/30/2022]
Abstract
Currently Alzheimer's disease (AD) is a devastating neurological disorder that mainly affects the elderly. The treatment of AD has as main objective to increase the levels of ACh in the synaptic cleft by inhibiting the cholinesterase enzymes, which are responsible for the degradation of ACh. Twenty one synthesized coumarins and neoflavanones (4-arylcoumarins) and theoretical studies were used to select the most promising ligands for in vitro experimental studies by Nuclear Magnetic Resonance. The eight compounds selected for the experimental study only 12b (effectiveness 68.54 ± 3.22%) was promising AChE inhibitor. This compound (12b) presents substituents at positions 4, 5, 6, 7 and 8 in a coumarin nucleus, being the most significant characteristic in comparison to the other studied compounds. These results can be used for the design and synthesis of other possible derivatives with inhibitory potential of AChE.
Collapse
Affiliation(s)
- Luana G de Souza
- Medicinal Chemistry Group, Department of Chemistry, Military Institute of Engineering, Praça General Tibúrcio 80, 22290-270 Rio de Janeiro, Brazil; Laboratório Integrado de Biologia Computacional e Pesquisa em Ciências Farmacêuticas, Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Rua São José do Barreto 764, 27965-045 Macaé, RJ, Brazil
| | - Paula F Moraes
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CCS, Bloco H - Sala H27, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Raquel A C Leão
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CCS, Bloco H - Sala H27, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Paulo R R Costa
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CCS, Bloco H - Sala H27, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Rosemberg O Soares
- Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Av. Brigadeiro Trompowski, Ilha do Fundão, CCS, Bloco D - Sala 30, 21949-900 Rio de Janeiro, RJ, Brazil
| | - Pedro G Pascutti
- Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Av. Brigadeiro Trompowski, Ilha do Fundão, CCS, Bloco D - Sala 30, 21949-900 Rio de Janeiro, RJ, Brazil; Diretoria de Metrologia Aplicada às Ciências da Vida (DIMAV), Instituto Nacional de Metrologia Qualidade e Tecnologia (INMETRO), Av. Nossa Senhora das Graças 50, Xerém, 25250-020, Duque de Caxias, RJ, Brazil
| | - Jose D Figueroa-Villar
- Medicinal Chemistry Group, Department of Chemistry, Military Institute of Engineering, Praça General Tibúrcio 80, 22290-270 Rio de Janeiro, Brazil
| | - Magdalena N Rennó
- Laboratório Integrado de Biologia Computacional e Pesquisa em Ciências Farmacêuticas, Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Rua São José do Barreto 764, 27965-045 Macaé, RJ, Brazil.
| |
Collapse
|