• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (5107499)   Today's Articles (3)
For: Zanetti-Polzi L, Biswas AD, Del Galdo S, Barone V, Daidone I. Hydration Shell of Antifreeze Proteins: Unveiling the Role of Non-Ice-Binding Surfaces. J Phys Chem B 2019;123:6474-6480. [PMID: 31280567 DOI: 10.1021/acs.jpcb.9b06375] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Number Cited by Other Article(s)
1
Guo S, Yang L, Hou C, Jiang S, Ma X, Shi L, Zheng B, Ye L, He X. The low-entropy hydration shell mediated ice-binding mechanism of antifreeze proteins. Int J Biol Macromol 2024;277:134562. [PMID: 39116982 DOI: 10.1016/j.ijbiomac.2024.134562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
2
Thosar AU, Cai Y, Marks SM, Vicars Z, Choi J, Pallath A, Patel AJ. On the engulfment of antifreeze proteins by ice. Proc Natl Acad Sci U S A 2024;121:e2320205121. [PMID: 38833468 PMCID: PMC11181090 DOI: 10.1073/pnas.2320205121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/16/2024] [Indexed: 06/06/2024]  Open
3
Dhibar S, Jana B. Accurate Prediction of Antifreeze Protein from Sequences through Natural Language Text Processing and Interpretable Machine Learning Approaches. J Phys Chem Lett 2023;14:10727-10735. [PMID: 38009833 DOI: 10.1021/acs.jpclett.3c02817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
4
Tian S, Li R, Liu X, Wang J, Yu J, Xu S, Tian Y, Yang J, Zhang L. Inhibition of Defect-Induced Ice Nucleation, Propagation, and Adhesion by Bioinspired Self-Healing Anti-Icing Coatings. RESEARCH (WASHINGTON, D.C.) 2023;6:0140. [PMID: 37214197 PMCID: PMC10194051 DOI: 10.34133/research.0140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023]
5
Farag H, Peters B. Free energy barriers for anti-freeze protein engulfment in ice: Effects of supercooling, footprint size, and spatial separation. J Chem Phys 2023;158:094501. [PMID: 36889941 DOI: 10.1063/5.0131983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]  Open
6
Pal P, Aich R, Chakraborty S, Jana B. Molecular Factors of Ice Growth Inhibition for Hyperactive and Globular Antifreeze Proteins: Insights from Molecular Dynamics Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022;38:15132-15144. [PMID: 36450094 DOI: 10.1021/acs.langmuir.2c02149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
7
Satyakam, Zinta G, Singh RK, Kumar R. Cold adaptation strategies in plants—An emerging role of epigenetics and antifreeze proteins to engineer cold resilient plants. Front Genet 2022;13:909007. [PMID: 36092945 PMCID: PMC9459425 DOI: 10.3389/fgene.2022.909007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022]  Open
8
Del Galdo S, Chiarini M, Casieri C, Daidone I. High density water clusters observed at high concentrations of the macromolecular crowder PEG400. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
9
Faccio C, Benzi M, Zanetti-Polzi L, Daidone I. Low- and high-density forms of liquid water revealed by a new medium-range order descriptor. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
10
Delesky EA, Srubar WV. Ice-binding proteins and bioinspired synthetic mimics in non-physiological environments. iScience 2022;25:104286. [PMID: 35573196 PMCID: PMC9097698 DOI: 10.1016/j.isci.2022.104286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]  Open
11
Wu X, Yao F, Zhang H, Li J. Antifreeze proteins and their biomimetics for cell cryopreservation: Mechanism, function and application-A review. Int J Biol Macromol 2021;192:1276-1291. [PMID: 34634336 DOI: 10.1016/j.ijbiomac.2021.09.211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022]
12
Biswas A, Barone V, Daidone I. High Water Density at Non-Ice-Binding Surfaces Contributes to the Hyperactivity of Antifreeze Proteins. J Phys Chem Lett 2021;12:8777-8783. [PMID: 34491750 PMCID: PMC8450935 DOI: 10.1021/acs.jpclett.1c01855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/16/2021] [Indexed: 05/30/2023]
13
Pal P, Chakraborty S, Jana B. Differential Hydration of Ice‐Binding Surface of Globular and Hyperactive Antifreeze Proteins. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
14
Li T, Li M, Zhong Q, Wu T. Effect of Fibril Length on the Ice Recrystallization Inhibition Activity of Nanocelluloses. Carbohydr Polym 2020;240:116275. [DOI: 10.1016/j.carbpol.2020.116275] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022]
15
Pal P, Chakraborty S, Jana B. Deciphering the Role of the Non-ice-binding Surface in the Antifreeze Activity of Hyperactive Antifreeze Proteins. J Phys Chem B 2020;124:4686-4696. [PMID: 32425044 DOI: 10.1021/acs.jpcb.0c01206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
16
Biswas AD, Barone V, Amadei A, Daidone I. Length-scale dependence of protein hydration-shell density. Phys Chem Chem Phys 2020;22:7340-7347. [PMID: 32211621 DOI: 10.1039/c9cp06214a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA