1
|
Kumar G, Ahlawat A, Bhardwaj H, Sahu GK, Rana PS, Solanki PR. Ultrasonication-assisted synthesis of transition metal carbide of MXene: an efficient and promising material for photocatalytic organic dyes degradation of rhodamine B and methylene blue in wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38232-38250. [PMID: 38801609 DOI: 10.1007/s11356-024-33505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Water pollutants of non-biodegradable toxic aromatic dye including Methylene blue (MB) and Rhodamine (RhB) are extremely carcinogenic thiazines used in various industries such as leather industry, paper industry, and the dyeing industry. The presence of dyes in wastewater causes severe threats to human health that are responsible for various harmful chronic or acute diseases and also shows an adverse impact on the environment as it reduces transparency and is harmful to water microorganisms. To overcome severe issues, many traditional techniques have been used to remove toxic pollutants, but these methods are insufficient to remove chemically stable dyes that remain in the treated wastewater. However, the photocatalytic degradation process is an efficient approach to degrade the dye up to the maximum extent with improved efficiency. Therefore, in this work, a new class of two-dimensional (2D) transition metal carbide of Titanium Carbide (Ti3C2Tx) MXene material was used for the organic dyes degradation such as MB and RhB using a photocatalytic process. A layered structure of hexagonal lattice symmetry of Ti3C2Tx MXene was successfully synthesized from the Titanium Aluminum Carbide of Ti3AlC2 bulk phase using an exfoliation process. Further, the XRD spectrum confirms the transformation of bulk MAX phase having (002) plane at 9.2° to Ti3C2Tx MXene of (002) plane at 8.88° confirms the successful removal of Al layer from MAX phase. A smooth, transparent, thin sheet-like morphology of Ti3C2Tx nanosheet size were found to be in the range of 70 to 150 nm evaluated from TEM images. Also, no holes or damages in the thin sheets were found after the treatment with strong hydrofluoric acid confirms the formation Ti3C2Tx layered sheets. The synthesized Ti3C2Tx MXene possesses excellent photocatalytic activity for the degradation of dyes MB, RhB, and mixtures of MB and RhB dyes. MB dye degraded with a degradation percentage efficiency of 99.32% in 30 min, while RhB dye was degraded upto 98.9% in 30 min. Also, experiments were conducted for degradation of mixture of MB and RhB dyes by UV light, and the degradation percentage efficiency were found to be 98.9% and 99.75% for mixture of MB and RhB dye in 45 min, respectively. Moreover, reaction rate constant (k) was determined for each dye of MB, RhB, and mixtures of MB and RhB and was found to be 0.0215 min-1 and 0.0058 min-1, and for mixtures, it was 0.0020 min-1 and 0.009 min-1, respectively.
Collapse
Affiliation(s)
- Gautam Kumar
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amit Ahlawat
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
- Hydrogen Energy Lab, Department of Physics, DCRUST, Murthal, Sonepat, Haryana, 131001, India
| | - Hema Bhardwaj
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Gaurav Kumar Sahu
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pawan S Rana
- Hydrogen Energy Lab, Department of Physics, DCRUST, Murthal, Sonepat, Haryana, 131001, India
| | - Partima R Solanki
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
2
|
Lopez-Herguedas N, Irazola M, Alvarez-Mora I, Mijangos L, Bilbao D, Etxebarria N, Zuloaga O, Olivares M, Prieto A. Evaluating membrane bioreactor treatment for the elimination of emerging contaminants using different analytical methods. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132833. [PMID: 37918067 DOI: 10.1016/j.jhazmat.2023.132833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Since wastewater treatment plants (WWTPs) were not originally designed to eliminate contaminants of emerging concern (CECs), alternative strategies like membrane bioreactor (MBR) technology are gaining importance in achieving effective CEC removal and minimising their environmental impact. In this study, composite wastewater samples were collected from the biggest WWTP in the Basque Country (Galindo, Biscay) and the performance of two secondary treatments (i.e. conventional activated sludge treatment, CAS, and MBR) was assessed. The combination of a suspect screening approach using liquid chromatography tandem high-resolution mass spectrometry (LC-HRMS) and multitarget analysis by gas chromatography-mass spectrometry (GC-MS) allowed the detection of approximately 200 compounds in the WWTP effluents. The estimated removal efficiencies (REs) revealed that only 16 micropollutants exhibited enhanced removal by MBR treatment (RE > 70% or 40 - 60%). The environmental risk posed by the non-eliminated compounds after both treatments remained similar, being anthracene, clarithromycin, bis(2-ethylhexyl) phthalate (DEHP) and dilantin the most concerning pollutants (RQ > 1). The Microtox® bioassay confirmed the MBR's efficiency in removing baseline toxicity, while suggesting a similar performance of CAS treatment. These minimal differences between treatments call into question the worthiness of MBR treatment and emphasise the need to seek more efficient alternative treatment methods.
Collapse
Affiliation(s)
- N Lopez-Herguedas
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| | - M Irazola
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - I Alvarez-Mora
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - L Mijangos
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - D Bilbao
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - N Etxebarria
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - O Zuloaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - M Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - A Prieto
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| |
Collapse
|
3
|
Zhao X, Meng K, Niu Y, Ming S, Rong J, Yu X, Zhang Y. Surface/interfacial transport through pores control desalination mechanisms in 2D carbon-based membranes. Phys Chem Chem Phys 2023; 25:30296-30307. [PMID: 37930335 DOI: 10.1039/d3cp03133k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The shortage of freshwater is a critical concern for contemporary society, and reverse osmosis desalination technology has gathered considerable attention as a potential solution to this problem. It has been recognized that the desalination process involving water flow through angstrom-sized pores has tremendous potential. However, it is challenging to obtain angstrom-sized pore structures with internal mass transfer and surface/interface properties matching the application conditions. Herein, a two-dimensional (2D) zeolite-like carbon structure (Carzeo-ANG) was constructed with unique angstrom-sized pores in the zeolite structure; then, the surface/interfacial transport behavior and percolation effect of the Carzeo-ANG desalination membrane were evaluated by density functional theory (DFT) calculations and classical molecular dynamics. The first-principles calculations in density functional theory were implemented through the Vienna ab initio simulation package (VASP), which is a commercial package for the simulation of carbon-based materials. The results show that Carzeo-ANG is periodically distributed with angstrom-sized pores (effective diameter = 5.4 Å) of dodecacyclic carbon rings, which ensure structural stability while maintaining sufficient mechanical strength. The remarkable salt-ion adsorption properties and mass transfer activity combined with the reasonable density distribution and free energy barrier for water molecules endow the membrane with superior desalination ability. At the pressure of 80 MPa, the rejection efficiency of Cl- and Na+ were 100% and 96.25%, and the membrane could achieve a water flux of 132.71 L cm-2 day-1 MPa-1. Moreover, the interconnected electronic structure of Carzeo-ANG imparts a self-cleaning effect.
Collapse
Affiliation(s)
- Xiaoyang Zhao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Kun Meng
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Yutao Niu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Sen Ming
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Ju Rong
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Xiaohua Yu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Yannan Zhang
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
4
|
Abdelsalam H, Sakr MA, Saroka VA, Abd-Elkader OH, Zhang Q. Nanoporous graphene quantum dots constructed from nanoribbon superlattices with controllable pore morphology and size for wastewater treatment. SURFACES AND INTERFACES 2023; 40:103109. [DOI: 10.1016/j.surfin.2023.103109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
5
|
Duan Y, Li L, Shen Z, Cheng J, He K. Engineering Metal-Organic-Framework (MOF)-Based Membranes for Gas and Liquid Separation. MEMBRANES 2023; 13:480. [PMID: 37233541 PMCID: PMC10221405 DOI: 10.3390/membranes13050480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Separation is one of the most energy-intensive processes in the chemical industry, and membrane-based separation technology contributes significantly to energy conservation and emission reduction. Additionally, metal-organic framework (MOF) materials have been widely investigated and have been found to have enormous potential in membrane separation due to their uniform pore size and high designability. Notably, pure MOF films and MOF mixed matrix membranes (MMMs) are the core of the "next generation" MOF materials. However, there are some tough issues with MOF-based membranes that affect separation performance. For pure MOF membranes, problems such as framework flexibility, defects, and grain orientation need to be addressed. Meanwhile, there still exist bottlenecks for MMMs such as MOF aggregation, plasticization and aging of the polymer matrix, poor interface compatibility, etc. Herein, corresponding methods are introduced to solve these problems, including inhibiting framework flexibility, regulating synthesis conditions, and enhancing the interaction between MOF and substrate. A series of high-quality MOF-based membranes have been obtained based on these techniques. Overall, these membranes revealed desired separation performance in both gas separation (e.g., CO2, H2, and olefin/paraffin) and liquid separation (e.g., water purification, organic solvent nanofiltration, and chiral separation).
Collapse
Affiliation(s)
- Yutian Duan
- College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China;
| | - Lei Li
- SINOPEC Nanjing Research Institute of Chemical Industry Co., Ltd., Nanjing 210048, China
| | - Zhiqiang Shen
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology, Hefei 230001, China
| | - Jian Cheng
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology, Hefei 230001, China
| | - Kewu He
- Imaging Center, Third Affiliated Hospital of Anhui Medical University, Hefei 230031, China
| |
Collapse
|
6
|
Ge R, Huo T, Gao Z, Li J, Zhan X. GO-Based Membranes for Desalination. MEMBRANES 2023; 13:220. [PMID: 36837724 PMCID: PMC9961078 DOI: 10.3390/membranes13020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Graphene oxide (GO), owing to its atomic thickness and tunable physicochemical properties, exhibits fascinating properties in membrane separation fields, especially in water treatment applications (due to unimpeded permeation of water through graphene-based membranes). Particularly, GO-based membranes used for desalination via pervaporation or nanofiltration have been widely investigated with respect to membrane design and preparation. However, the precise construction of transport pathways, facile fabrication of large-area GO-based membranes (GOMs), and robust stability in desalination applications are the main challenges restricting the industrial application of GOMs. This review summarizes the challenges and recent research and development of GOMs with respect to preparation methods, the regulation of GOM mass transfer pathways, desalination performance, and mass transport mechanisms. The review aims to provide an overview of the precise regulation methods of the horizontal and longitudinal mass transfer channels of GOMs, including GO reduction, interlayer cross-linking, intercalation with cations, polymers, or inorganic particles, etc., to clarify the relationship between the microstructure and desalination performance, which may provide some new insight regarding the structural design of high-performance GOMs. Based on the above analysis, the future and development of GOMs are proposed.
Collapse
Affiliation(s)
- Rui Ge
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Teng Huo
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Zhongyong Gao
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Jiding Li
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xia Zhan
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
7
|
Günay MG, Kemerli U, Karaman C, Karaman O, Güngör A, Karimi-Maleh H. Review of functionalized nano porous membranes for desalination and water purification: MD simulations perspective. ENVIRONMENTAL RESEARCH 2023; 217:114785. [PMID: 36395866 DOI: 10.1016/j.envres.2022.114785] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/12/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Today, it is known that most of the water sources in the world are either drying out or contaminated. With the increasing population, the water demand is increasing drastically almost in every sector each year, which makes processes like water treatment and desalination one of the most critical environmental subjects of the future. Therefore, developing energy-efficient and faster methods are a must for the industry. Using functional groups on the membranes is known to be an effective way to develop shorter routes for water treatment. Accordingly, a review of nano-porous structures having functional groups used or designed for desalination and water treatment is presented in this study. A systematic scan has been conducted in the literature for the studies performed by molecular dynamics simulations. The selected studies have been classified according to membrane geometry, actuation mechanism, functionalized groups, and contaminant materials. Permeability, rejection rate, pressure, and temperature ranges are compiled for all of the studies examined. It has been observed that the pore size of a well-designed membrane should be small enough to reject contaminant molecules, atoms, or ions but wide enough to allow high water permeation. Adding functional groups to membranes is observed to affect the permeability and the rejection rate. In general, hydrophilic functional groups around the pores increase membrane permeability. In contrast, hydrophobic ones decrease the permeability. Besides affecting water permeation, the usage of charged functional groups mainly affects the rejection rate of ions and charged molecules.
Collapse
Affiliation(s)
- M Gökhan Günay
- Mechanical Engineering Department, Akdeniz University, Antalya, Turkey
| | - Ubade Kemerli
- Mechanical Engineering Department, Trakya University, Edirne, Turkey
| | - Ceren Karaman
- Vocational School of Technical Sciences, Department of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Onur Karaman
- Vocational School of Health Services, Department of Medical Services and Techniques, Akdeniz University, Antalya, 07070, Turkey.
| | - Afşin Güngör
- Mechanical Engineering Department, Akdeniz University, Antalya, Turkey.
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
8
|
Majidi S, Erfan-Niya H, Azamat J, Cruz-Chú ER, Walther JH. The separation performance of porous carbon nitride membranes for removal of nitrate and nitrite ions from contaminated aqueous solutions: A molecular dynamics study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Duan M, Gu Z, Manuel Perez-Aguilar J. Controllable phosphorene filter for water desalination by tuning the in-plane strain. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
K VP, Sathian SP. The effect of temperature on water desalination through two-dimensional nanopores. J Chem Phys 2020; 152:164701. [PMID: 32357792 DOI: 10.1063/1.5143069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Two-dimensional (2D) materials such as graphene, molybdenum sulfide, and hexagonal boron nitride are widely studied for separation applications such as water desalination. Desalination across such 2D nanoporous membranes is largely influenced by the bulk transport properties of water, which are, in turn, sensitive to the operating temperature. However, there have been no studies on the effect of temperature on desalination through 2D nanopores. We investigated water desalination through hydrogen functionalized graphene nanopores of varying pore areas at temperatures 275.0 K, 300.0 K, 325.0 K, and 350.0 K. The water flux showed a direct relation with the diffusion coefficient and an inverse relation with the hydrogen-bond lifetime. As a direct consequence, the water flux was found to be related to the temperature as per the Arrhenius equation, similar to an activated process. The results from the present study improve the understanding on water and ion permeation across nanoporous 2D materials at different temperatures. Furthermore, the present investigation suggests a kinetic model, which can predict the water and ion permeation based on the characteristics of the nanopore.
Collapse
Affiliation(s)
- Vishnu Prasad K
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| | - Sarith P Sathian
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|