1
|
Hartmann L, Traoré N, Peukert W, Walter J. Characterization of the two-dimensional length and diameter distributions of gold nanorods by size exclusion chromatography. Sci Rep 2025; 15:8501. [PMID: 40075118 PMCID: PMC11903794 DOI: 10.1038/s41598-025-90941-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Access to complex multidimensional property distributions of nanoparticle systems is indispensable for the understanding of their synthesis, processing and application in modern production technologies. Plasmonic gold nanorods are a system of particular interest due to their shape-dependent localized surface plasmon resonance. In this study, we show how the optical back coupling technique, previously developed for the analysis of sedimentation coefficient-resolved extinction spectra derived from analytical ultracentrifugation experiments, can be transferred to standard laboratory equipment, namely size exclusion chromatography. The optical back coupling method utilizes the unique spectral extinction of plasmonic nanoparticles such as gold nanorods and other geometries combined with their hydrodynamic properties to determine full size and shape distributions. Our technique opens up a simple and easy-to-use characterization platform that requires very little sample volume and provides multidimensional access to length, diameter, aspect ratio, volume and surface area distributions of plasmonic nanoparticles in one single experiment. We characterize a variety of gold nanorods of different aspect ratios and validate our results by complementary scanning transmission electron microscopy experiments. Finally, we provide an outlook on how this approach can be developed further.
Collapse
Affiliation(s)
- Lukas Hartmann
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058, Erlangen, Germany
- Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstraße 9a, 91058, Erlangen, Germany
| | - Nabi Traoré
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058, Erlangen, Germany
- Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstraße 9a, 91058, Erlangen, Germany
| | - Wolfgang Peukert
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058, Erlangen, Germany
- Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstraße 9a, 91058, Erlangen, Germany
| | - Johannes Walter
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058, Erlangen, Germany.
- Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstraße 9a, 91058, Erlangen, Germany.
| |
Collapse
|
2
|
Wu W, Knoll MSG, Giraudet C, Heinrich Rausch M, Fröba AP. Heterodyne dynamic light scattering for the characterization of particle dispersions. APPLIED OPTICS 2023; 62:8007-8017. [PMID: 38038095 DOI: 10.1364/ao.502659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/22/2023] [Indexed: 12/02/2023]
Abstract
Particle self-diffusivities in unimodal and bimodal aqueous dispersions are characterized by dynamic light scattering (DLS) applying a heterodyne detection scheme. For unimodal dispersions close to infinite dilution, it could be evidenced that pure homodyne conditions cannot be realized, leading to an increasing underestimation of diffusivity with a decreasing concentration. Even for bimodal dispersions and neglecting any local oscillator field, the coherent superposition of scattered light from different particle species hinders a clear assignment of the measured signals and their evaluation for diffusivity. In this case, the impact of a cross term on the determined diffusivities cannot be neglected. The results emphasize that the use of a heterodyne detection scheme in DLS experiments is a key aspect for an accurate determination of particle diffusivities in low-concentrated unimodal and bimodal dispersions.
Collapse
|
3
|
Diffusion of gold nanoparticles in porous silica monoliths determined by dynamic light scattering. J Colloid Interface Sci 2023; 641:251-264. [PMID: 36933471 DOI: 10.1016/j.jcis.2023.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
HYPOTHESIS The applicability of the dynamic light scattering method for the determination of particle diffusivity under confinement without applying refractive index matching was not adequately explored so far. The confinement effect on particle diffusion in a porous material which is relevant for particle chromatography has also not yet been fully characterized. EXPERIMENTS Dynamic light scattering experiments were performed for unimodal dispersions of 11-mercaptoundecanoic acid-capped gold nanoparticles. Diffusion coefficients of gold nanoparticles in porous silica monoliths were determined without limiting refractive index matching fluids. Comparative experiments were also performed with the same nanoparticles and porous silica monolith but applying refractive index matching. FINDINGS Two distinct diffusivities could be determined inside the porous silica monolith, both smaller than that in free media, showing a slowing-down of the diffusion processes of nanoparticles under confinement. While the larger diffusivity can be related to the slightly slowed-down diffusion of particles in the bulk of the pores and in the necks connecting individual pores, the smaller diffusivity might be related to the diffusion of particles near the pore walls. It shows that the dynamic light scattering method with a heterodyne detection scheme can be used as a reliable and competitive tool for determining particle diffusion under confinement.
Collapse
|
4
|
Klett K, Cherstvy AG, Shin J, Sokolov IM, Metzler R. Non-Gaussian, transiently anomalous, and ergodic self-diffusion of flexible dumbbells in crowded two-dimensional environments: Coupled translational and rotational motions. Phys Rev E 2022; 104:064603. [PMID: 35030844 DOI: 10.1103/physreve.104.064603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/18/2021] [Indexed: 12/22/2022]
Abstract
We employ Langevin-dynamics simulations to unveil non-Brownian and non-Gaussian center-of-mass self-diffusion of massive flexible dumbbell-shaped particles in crowded two-dimensional solutions. We study the intradumbbell dynamics of the relative motion of the two constituent elastically coupled disks. Our main focus is on effects of the crowding fraction ϕ and of the particle structure on the diffusion characteristics. We evaluate the time-averaged mean-squared displacement (TAMSD), the displacement probability-density function (PDF), and the displacement autocorrelation function (ACF) of the dimers. For the TAMSD at highly crowded conditions of dumbbells, e.g., we observe a transition from the short-time ballistic behavior, via an intermediate subdiffusive regime, to long-time Brownian-like spreading dynamics. The crowded system of dimers exhibits two distinct diffusion regimes distinguished by the scaling exponent of the TAMSD, the dependence of the diffusivity on ϕ, and the features of the displacement-ACF. We attribute these regimes to a crowding-induced transition from viscous to viscoelastic diffusion upon growing ϕ. We also analyze the relative motion in the dimers, finding that larger ϕ suppress their vibrations and yield strongly non-Gaussian PDFs of rotational displacements. For the diffusion coefficients D(ϕ) of translational and rotational motion of the dumbbells an exponential decay with ϕ for weak and a power-law variation D(ϕ)∝(ϕ-ϕ^{★})^{2.4} for strong crowding is found. A comparison of simulation results with theoretical predictions for D(ϕ) is discussed and some relevant experimental systems are overviewed.
Collapse
Affiliation(s)
- Kolja Klett
- Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Andrey G Cherstvy
- Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.,Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Jaeoh Shin
- Department of Chemistry, Rice University, Houston, Texas 77005, USA.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Igor M Sokolov
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany.,IRIS Adlershof, Zum Großen Windkanal 6, 12489 Berlin, Germany
| | - Ralf Metzler
- Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
5
|
Mayer DB, Sarmiento-Gómez E, Escobedo-Sánchez MA, Segovia-Gutiérrez JP, Kurzthaler C, Egelhaaf SU, Franosch T. Two-dimensional Brownian motion of anisotropic dimers. Phys Rev E 2021; 104:014605. [PMID: 34412330 DOI: 10.1103/physreve.104.014605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/04/2021] [Indexed: 11/07/2022]
Abstract
We study the two-dimensional motion of colloidal dimers by single-particle tracking and compare the experimental observations obtained by bright-field microscopy to theoretical predictions for anisotropic diffusion. The comparison is based on the mean-square displacements in the laboratory and particle frame as well as generalizations of the self-intermediate scattering functions, which provide insights into the rotational dynamics of the dimer. The diffusional anisotropy leads to a measurable translational-rotational coupling that becomes most prominent by aligning the coordinate system with the initial orientation of the particles. In particular, we find a splitting of the time-dependent diffusion coefficients parallel and perpendicular to the long axis of the dimer which decays over the orientational relaxation time. Deviations of the self-intermediate scattering functions from pure exponential relaxation are small but can be resolved experimentally. The theoretical predictions and experimental results agree quantitatively.
Collapse
Affiliation(s)
- Daniel B Mayer
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 25/2, A-6020 Innsbruck, Austria
| | - Erick Sarmiento-Gómez
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany.,División de Ciencias e Ingenierias, Departamento de Ingenieria Física, Universidad de Guanajuato, León, Mexico
| | - Manuel A Escobedo-Sánchez
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Juan Pablo Segovia-Gutiérrez
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Christina Kurzthaler
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Stefan U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 25/2, A-6020 Innsbruck, Austria
| |
Collapse
|
6
|
Abareshi A, Arshadi Pirlar M, Houshiar M. Experimental and theoretical investigation of the photothermal effect in gold nanorods. NEW J CHEM 2021. [DOI: 10.1039/d0nj04580b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, gold nanorods (GNRs) were synthesized using a seed-mediated route and their photothermal properties were investigated experimentally as well as theoretically.
Collapse
Affiliation(s)
- Afsaneh Abareshi
- Department of Physics
- Shahid Beheshti University
- Tehran 1983969411
- Iran
| | | | | |
Collapse
|
7
|
Defrese MK, Farmer MA, Long Y, Timmerman LR, Bae Y, Marsac PJ. Approaches to Understanding the Solution-State Organization of Spray-Dried Dispersion Feed Solutions and Its Translation to the Solid State. Mol Pharm 2020; 17:4548-4563. [DOI: 10.1021/acs.molpharmaceut.0c00729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew K. Defrese
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Matthew A. Farmer
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Yuhan Long
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Lucas R. Timmerman
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Younsoo Bae
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Patrick J. Marsac
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
8
|
Diffusion of Gold Nanoparticles in Inverse Opals Probed by Heterodyne Dynamic Light Scattering. Transp Porous Media 2019. [DOI: 10.1007/s11242-019-01364-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|