1
|
Liang YT, Bai SQ, Zhang YY, Li AY. Theoretical Study on the Coordination and Separation Capacity of Macrocyclic N-Donor Extractants for Am(III)/Eu(III). J Phys Chem A 2023; 127:6865-6880. [PMID: 37583058 DOI: 10.1021/acs.jpca.3c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Designing ligands that can effectively separate actinide An(III)/lanthanide Ln(III) in the solvent extraction process remains one of the key issues in the treatment of accumulated spent nuclear fuel. Nitrogen donor ligands are considered as promising extractants for the separation of An(III) and Ln(III) due to their environmental friendliness. Four new macrocyclic N-donor hexadentate extractants were designed and their coordination with Am(III) and Eu(III), as well as their extraction selectivity and separation performance for Am(III) and Eu(III), were investigated by scalar relativistic density functional theory. A variety of theoretical methods have been used to evaluate the properties of the four ligands and the coordination structures, bonding properties, and thermodynamic properties of the complexes formed by the four ligands with Am(III) and Eu(III). The results of various wavefunction analysis methods including NBO analysis, quantum theory of atoms in molecules (QTAIM) analysis, and so on show that Am(III) has a stronger coordination ability with the ligands than Eu(III) due to the Am 5f orbitals more involved in bonding with the ligands than the Eu 4f orbitals, and the bonding environment of the N-donor in the ligand has a significant effect on its coordination ability of the metal ions. Thermodynamic analysis of the solvent extraction process shows that all of the four N-containing macrocyclic ligands have good extraction selectivity and separation performance for Am(III) and Eu(III). This study provides theoretical support for designing potential nitrogen-containing macrocyclic extractants with excellent separation performance.
Collapse
Affiliation(s)
- Yu Ting Liang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Shan Qin Bai
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yi Ying Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - An Yong Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
2
|
Zou Y, Lan JH, Yuan LY, Wang CZ, Wu QY, Chai ZF, Ren P, Shi WQ. Theoretical Insights into the Selectivity of Hydrophilic Sulfonated and Phosphorylated Ligands to Am(III) and Eu(III) Ions. Inorg Chem 2023; 62:4581-4589. [PMID: 36935646 DOI: 10.1021/acs.inorgchem.2c04476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
The separation of lanthanides and actinides has attracted great attention in spent nuclear fuel reprocessing up to date. In addition, liquid-liquid extraction is a feasible and useful way to separate An(III) from Ln(III) based on their relative solubilities in two different immiscible liquids. The hydrophilic bipyridine- and phenanthroline-based nitrogen-chelating ligands show excellent performance in separation of Am(III) and Eu(III) as reported previously. To profoundly explore the separation mechanism, herein, we first of all designed four hydrophilic sulfonated and phosphorylated ligands L1, L2, L3, and L4 based on the bipyridine and phenanthroline backbones. In addition, we studied the structures of these ligands and their neutral complexes [ML(NO3)3] (M = Am, Eu) as well as the thermodynamic properties of complexing reactions through the scalar relativistic density functional theory. According to the changes of the Gibbs free energy for the back-extraction reactions, the phenanthroline-based ligands L2 and L4 have stronger complexing capacity for both Am(III) and Eu(III) ions while the phosphorylated ligand L3 with the bipyridine framework has the highest Am(III)/Eu(III) selectivity. In addition, the charge decomposition analysis revealed a higher degree of charge transfer from the ligand to Am(III), suggesting stronger donor-acceptor interactions in the Am(III) complexes. This study can provide theoretical insights into the separation of actinide(III)/lanthanide(III) using hydrophilic sulfonated and phosphorylated N-donor ligands.
Collapse
Affiliation(s)
- Yao Zou
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi 330013, China.,Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Yong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Ren
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Wang Q, Liu Z, Xia M, Song YF, Chai Z, Wang D. Biphasic Behaviors of Nd 3+ Bound with Cyanex272, Cyanex301, and Cyanex302: A Molecular Dynamics Simulation Study. Inorg Chem 2022; 61:8920-8929. [PMID: 35649185 DOI: 10.1021/acs.inorgchem.2c01118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By means of molecular dynamics simulations, this work addresses the conformational flexibility and migration of trivalent neodymium (Nd3+) coordinated with three or six titled (thio)phosphinic ligands and shows that the fluxionality of the complexes enables them to adapt to the solvent environment during the migration. Cyanex272 forms a more compact complex than the other two types of ligands and screens more significantly the interaction between the water solvent and the metal ion in the complex, which weakens the detainment of the aqueous environment. This results in faster motion of the Nd(C272)3 complex both in its translation and rotation than the other complexes when migrating to the organic phase and wins over the other two ligands in transporting the metal ions from the aqueous phase to the organic phase. Depending on the solvent environment, these complexes may take two types of conformations to balance the forces from the environment benefited from their fluxionality. The migration of the M:L = 1:6 complexes, Nd[H(C272)2]3 and Nd[H(C301)2]3, was also investigated. The rich presence of the alkyl groups in the complexes screens the influence of the aqueous environment and benefits the transportation of metal ions to the interface. This work is expected to contribute to the community of inorganic chemistry interested in the coordination chemistry of metal ions and their behaviors in the condensed phase.
Collapse
Affiliation(s)
- Qin Wang
- State Key Laboratory of Chemical Resource Engineering, School of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.,State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ziyi Liu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Miaoren Xia
- Multidisciplinary Initiative Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, School of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, and School of Radiation Medicine and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, Jiangsu 215123, China.,Multidisciplinary Initiative Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Dongqi Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.,Multidisciplinary Initiative Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Ye ZR, Wu QY, Wang CZ, Lan JH, Chai ZF, Wang HQ, Shi WQ. Theoretical Insights into the Selective Separation of Am(III)/Eu(III) Using Hydrophilic Triazolyl-Based Ligands. Inorg Chem 2022; 61:6110-6119. [PMID: 35416038 DOI: 10.1021/acs.inorgchem.2c00232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Designing ligands with efficient actinide (An(III))/lanthanide (Ln(III)) separation performance is still one of the key issues for the disposal of accumulated radioactive waste and the recovery of minor actinides. Recently, the hydrophilic ligands as promising extractants in the innovative Selective ActiNide Extraction (i-SANEX) process show excellent selectivity for Am(III) over Eu(III), such as hydroxylated-based ligands. In this work, we investigated the selective back-extraction toward Am(III) over Eu(III) with three hydrophilic hydroxylated triazolyl-based ligands (the skeleton of pyridine La, bipyridine Lb, and phenanthroline Lc) using scalar-relativistic density functional theory. The properties of three hydrophilic hydroxylated ligands and the coordination structures, bonding nature, and thermodynamic properties of the Am(III) and Eu(III) complexes with three ligands have been evaluated using multiple theoretical methods. The results of molecular orbitals (MOs), quantum theory of atoms in molecules (QTAIMs), and natural bond orbital (NBO) reveal that Am-N bonds possess more covalent character compared to Eu-N bonds. The thermodynamic results indicate that the complexing ability of Lb and Lc with metal ions is almost the same, which is stronger than that of La. However, La has the best Am(III)/Eu(III) selectivity among three ligands, which is attributed to the largest difference in covalency between Am-Ntrzl and Eu-Ntrzl bonds in MLa(NO3)3. This work provides an in-depth understanding of the preferential selectivity of the hydrophilic hydroxylated ligands with An(III) over Ln(III) and also provides theoretical support for designing potential hydrophilic ligands with excellent separation performance of Am(III)/Eu(III).
Collapse
Affiliation(s)
- Zi-Rong Ye
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.,Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Qing Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Mangin T, Schurhammer R, Wipff G. Liquid-Liquid Extraction of the Eu(III) Cation by BTP Ligands into Ionic Liquids: Interfacial Features and Extraction Mechanisms Investigated by MD Simulations. J Phys Chem B 2022; 126:2876-2890. [PMID: 35389658 DOI: 10.1021/acs.jpcb.2c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
What happens at the ionic-liquid (IL)/water interface when the Eu3+ cation is complexed and extracted by bis(dimethyltriazinyl) pyridine "BTP" ligands has been investigated by molecular dynamics and potential of mean force simulations on the interface crossing by key species: neutral BTP, its protonated BTPH+ form, Eu3+, and the Eu(BTP)33+ complex. At both the [BMI][Tf2N]/water and [OMI][Tf2N]/water interfaces, neither BTP nor Eu(BTP)33+ are found to adsorb. The distribution of Eu(BTP)23+ and Eu(BTP)3+ precursors of Eu(BTP)33+, and of their nitrate adducts, implies the occurrence of a stepwise complexation process in the interfacial domain, however. The analysis of the ionic content of the bulk phases and of their interface before and after extraction highlights the role of charge buffering by interfacial IL cations and anions, by different amounts depending on the IL. Comparison of ILs with octanol as the oil phase reveals striking differences regarding the extraction efficiency, the affinity of Eu(BTP)33+ for the interface, the effects of added nitric acid and of counterions (NO3- vs Tf2N-), charge neutralization mechanisms, and the extent of "oil" heterogeneity. Extraction into octanol is suggested to proceed via adsorption at the surface of water pools, nanoemulsions, or droplets, with marked counterion effects.
Collapse
Affiliation(s)
- Thomas Mangin
- Laboratoire MSM, UMR CNRS 7140, Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Rachel Schurhammer
- Laboratoire MSM, UMR CNRS 7140, Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Georges Wipff
- Laboratoire MSM, UMR CNRS 7140, Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| |
Collapse
|
6
|
Ye ZR, Wu QY, Wang CZ, Lan JH, Chai ZF, Wang HQ, Shi WQ. Theoretical Insights into the Separation of Am(III)/Eu(III) by Hydrophilic Sulfonated Ligands. Inorg Chem 2021; 60:16409-16419. [PMID: 34632757 DOI: 10.1021/acs.inorgchem.1c02256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, we focused on the separation of Am(III)/Eu(III) with four hydrophilic sulfonated ligands (L) based on the framework of phenanthroline and bipyridine through scalar relativistic density functional theory. We studied the electronic structures of [ML(NO3)3] (M = Am, Eu) complexes and the bonding nature between metal and ligands as well as evaluated the separation selectivity of Am(III)/Eu(III). The tetrasulfonated ligand L2 with a bipyridine framework has the strongest complexing ability for metal ions probably because of the better solubility and flexible skeleton. The disulfonated ligand L1 has the highest Am(III)/Eu(III) selectivity, which is attributed to the covalent difference between the Am-N and Eu-N bonds based on the quantum theory of atoms in the molecule analysis. Thermodynamic analysis shows that the four hydrophilic sulfonated ligands are more selective toward Am(III) over Eu(III). In addition, these hydrophilic sulfonated ligands show better complexing ability and Am(III)/Eu(III) selectivity compared to the corresponding hydrophobic nonsulfonated ones. This work provides theoretical support for the separation of Am(III)/Eu(III) using hydrophilic sulfonated ligands.
Collapse
Affiliation(s)
- Zi-Rong Ye
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Engineering Laboratory of Nuclear Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Hong-Qing Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
8
|
Yang X, Xu L, Hao Y, Meng R, Zhang X, Lei L, Xiao C. Effect of Counteranions on the Extraction and Complexation of Trivalent Lanthanides with Tetradentate Phenanthroline-Derived Phosphonate Ligands. Inorg Chem 2020; 59:17453-17463. [DOI: 10.1021/acs.inorgchem.0c02728] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiao Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lei Xu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuxun Hao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ruixue Meng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xingwang Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|