1
|
Raghavan B, Paulikat M, Ahmad K, Callea L, Rizzi A, Ippoliti E, Mandelli D, Bonati L, De Vivo M, Carloni P. Drug Design in the Exascale Era: A Perspective from Massively Parallel QM/MM Simulations. J Chem Inf Model 2023; 63:3647-3658. [PMID: 37319347 PMCID: PMC10302481 DOI: 10.1021/acs.jcim.3c00557] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Indexed: 06/17/2023]
Abstract
The initial phases of drug discovery - in silico drug design - could benefit from first principle Quantum Mechanics/Molecular Mechanics (QM/MM) molecular dynamics (MD) simulations in explicit solvent, yet many applications are currently limited by the short time scales that this approach can cover. Developing scalable first principle QM/MM MD interfaces fully exploiting current exascale machines - so far an unmet and crucial goal - will help overcome this problem, opening the way to the study of the thermodynamics and kinetics of ligand binding to protein with first principle accuracy. Here, taking two relevant case studies involving the interactions of ligands with rather large enzymes, we showcase the use of our recently developed massively scalable Multiscale Modeling in Computational Chemistry (MiMiC) QM/MM framework (currently using DFT to describe the QM region) to investigate reactions and ligand binding in enzymes of pharmacological relevance. We also demonstrate for the first time strong scaling of MiMiC-QM/MM MD simulations with parallel efficiency of ∼70% up to >80,000 cores. Thus, among many others, the MiMiC interface represents a promising candidate toward exascale applications by combining machine learning with statistical mechanics based algorithms tailored for exascale supercomputers.
Collapse
Affiliation(s)
- Bharath Raghavan
- Computational
Biomedicine, Institute of Advanced Simulations IAS-5/Institute for
Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, Jülich 52428, Germany
- Department
of Physics, RWTH Aachen University, Aachen 52074, Germany
| | - Mirko Paulikat
- Computational
Biomedicine, Institute of Advanced Simulations IAS-5/Institute for
Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, Jülich 52428, Germany
| | - Katya Ahmad
- Computational
Biomedicine, Institute of Advanced Simulations IAS-5/Institute for
Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, Jülich 52428, Germany
| | - Lara Callea
- Department
of Earth and Environmental Sciences, University
of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Andrea Rizzi
- Computational
Biomedicine, Institute of Advanced Simulations IAS-5/Institute for
Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, Jülich 52428, Germany
- Atomistic
Simulations, Italian Institute of Technology, Genova 16163, Italy
| | - Emiliano Ippoliti
- Computational
Biomedicine, Institute of Advanced Simulations IAS-5/Institute for
Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, Jülich 52428, Germany
| | - Davide Mandelli
- Computational
Biomedicine, Institute of Advanced Simulations IAS-5/Institute for
Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, Jülich 52428, Germany
| | - Laura Bonati
- Department
of Earth and Environmental Sciences, University
of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Marco De Vivo
- Molecular
Modelling and Drug Discovery, Italian Institute
of Technology, Genova 16163, Italy
| | - Paolo Carloni
- Computational
Biomedicine, Institute of Advanced Simulations IAS-5/Institute for
Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, Jülich 52428, Germany
- Department
of Physics and Universitätsklinikum, RWTH Aachen University, Aachen 52074, Germany
| |
Collapse
|
2
|
Kubař T, Elstner M, Cui Q. Hybrid Quantum Mechanical/Molecular Mechanical Methods For Studying Energy Transduction in Biomolecular Machines. Annu Rev Biophys 2023; 52:525-551. [PMID: 36791746 PMCID: PMC10810093 DOI: 10.1146/annurev-biophys-111622-091140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Hybrid quantum mechanical/molecular mechanical (QM/MM) methods have become indispensable tools for the study of biomolecules. In this article, we briefly review the basic methodological details of QM/MM approaches and discuss their applications to various energy transduction problems in biomolecular machines, such as long-range proton transports, fast electron transfers, and mechanochemical coupling. We highlight the particular importance for these applications of balancing computational efficiency and accuracy. Using several recent examples, we illustrate the value and limitations of QM/MM methodologies for both ground and excited states, as well as strategies for calibrating them in specific applications. We conclude with brief comments on several areas that can benefit from further efforts to make QM/MM analyses more quantitative and applicable to increasingly complex biological problems.
Collapse
Affiliation(s)
- T Kubař
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany;
| | - M Elstner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany;
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany;
| | - Q Cui
- Department of Chemistry, Boston University, Boston, Massachusetts, USA;
- Department of Physics, Boston University, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Noji T, Ishikita H. Mechanism of Absorption Wavelength Shift of Bacteriorhodopsin During Photocycle. J Phys Chem B 2022; 126:9945-9955. [PMID: 36413506 DOI: 10.1021/acs.jpcb.2c04359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bacteriorhodopsin, a light-driven proton pump, alters the absorption wavelengths in the range of 410-617 nm during the photocycle. Here, we report the absorption wavelengths, calculated using 12 bacteriorhodopsin crystal structures (including the BR, BR13-cis, J, K0, KE, KL, L, M, N, and O state structures) and a combined quantum mechanical/molecular mechanical/polarizable continuum model (QM/MM/PCM) approach. The QM/MM/PCM calculations reproduced the experimentally measured absorption wavelengths with a standard deviation of 4 nm. The shifts in the absorption wavelengths can be explained mainly by the following four factors: (i) retinal Schiff base deformation/twist induced by the protein environment, leading to a decrease in the electrostatic interaction between the protein environment and the retinal Schiff base; (ii) changes in the protonation state of the protein environment, directly altering the electrostatic interaction between the protein environment and the retinal Schiff base; (iii) changes in the protonation state; or (iv) isomerization of the retinal Schiff base, where the absorption wavelengths of the isomers originally differ.
Collapse
Affiliation(s)
- Tomoyasu Noji
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan.,Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
| |
Collapse
|
4
|
Brünig FN, Hillmann P, Kim WK, Daldrop JO, Netz RR. Proton-transfer spectroscopy beyond the normal-mode scenario. J Chem Phys 2022; 157:174116. [DOI: 10.1063/5.0116686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A stochastic theory is developed to predict the spectral signature of proton-transfer processes and is applied to infrared spectra computed from ab initio molecular-dynamics simulations of a single [Formula: see text] cation. By constraining the oxygen atoms to a fixed distance, this system serves as a tunable model for general proton-transfer processes with variable barrier height. Three spectral contributions at distinct frequencies are identified and analytically predicted: the quasi-harmonic motion around the most probable configuration, amenable to normal-mode analysis, the contribution due to transfer paths when the proton moves over the barrier, and a shoulder for low frequencies stemming from the stochastic transfer-waiting-time distribution; the latter two contributions are not captured by normal-mode analysis but exclusively reported on the proton-transfer kinetics. In accordance with reaction rate theory, the transfer-waiting-contribution frequency depends inversely exponentially on the barrier height, whereas the transfer-path-contribution frequency is rather insensitive to the barrier height.
Collapse
Affiliation(s)
- Florian N. Brünig
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Paul Hillmann
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Won Kyu Kim
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Jan O. Daldrop
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Roland R. Netz
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
5
|
Archaeal Lipids Regulating the Trimeric Structure Dynamics of Bacteriorhodopsin for Efficient Proton Release and Uptake. Int J Mol Sci 2022; 23:ijms23136913. [PMID: 35805918 PMCID: PMC9278134 DOI: 10.3390/ijms23136913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
S-TGA-1 and PGP-Me are native archaeal lipids associated with the bacteriorhodopsin (bR) trimer and contribute to protein stabilization and native dynamics for proton transfer. However, little is known about the underlying molecular mechanism of how these lipids regulate bR trimerization and efficient photocycling. Here, we explored the specific binding of S-TGA-1 and PGP-Me with the bR trimer and elucidated how specific interactions modulate the bR trimeric structure and proton release and uptake using long-term atomistic molecular dynamic simulations. Our results showed that S-TGA-1 and PGP-Me are essential for stabilizing the bR trimer and maintaining the coherent conformational dynamics necessary for proton transfer. The specific binding of S-TGA-1 with W80 and K129 regulates proton release on the extracellular surface by forming a “Glu-shared” model. The interaction of PGP-Me with K40 ensures proton uptake by accommodating the conformation of the helices to recruit enough water molecules on the cytoplasmic side. The present study results could fill in the theoretical gaps of studies on the functional role of archaeal lipids and could provide a reference for other membrane proteins containing similar archaeal lipids.
Collapse
|
6
|
Ultrafast proton-coupled isomerization in the phototransformation of phytochrome. Nat Chem 2022; 14:823-830. [PMID: 35577919 PMCID: PMC9252900 DOI: 10.1038/s41557-022-00944-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/01/2022] [Indexed: 11/08/2022]
Abstract
The biological function of phytochromes is triggered by an ultrafast photoisomerization of the tetrapyrrole chromophore biliverdin between two rings denoted C and D. The mechanism by which this process induces extended structural changes of the protein is unclear. Here we report ultrafast proton-coupled photoisomerization upon excitation of the parent state (Pfr) of bacteriophytochrome Agp2. Transient deprotonation of the chromophore's pyrrole ring D or ring C into a hydrogen-bonded water cluster, revealed by a broad continuum infrared band, is triggered by electronic excitation, coherent oscillations and the sudden electric-field change in the excited state. Subsequently, a dominant fraction of the excited population relaxes back to the Pfr state, while ~35% follows the forward reaction to the photoproduct. A combination of quantum mechanics/molecular mechanics calculations and ultrafast visible and infrared spectroscopies demonstrates how proton-coupled dynamics in the excited state of Pfr leads to a restructured hydrogen-bond environment of early Lumi-F, which is interpreted as a trigger for downstream protein structural changes.
Collapse
|
7
|
True-atomic-resolution insights into the structure and functional role of linear chains and low-barrier hydrogen bonds in proteins. Nat Struct Mol Biol 2022; 29:440-450. [PMID: 35484235 DOI: 10.1038/s41594-022-00762-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/14/2022] [Indexed: 12/21/2022]
Abstract
Hydrogen bonds are fundamental to the structure and function of biological macromolecules and have been explored in detail. The chains of hydrogen bonds (CHBs) and low-barrier hydrogen bonds (LBHBs) were proposed to play essential roles in enzyme catalysis and proton transport. However, high-resolution structural data from CHBs and LBHBs is limited. The challenge is that their 'visualization' requires ultrahigh-resolution structures of the ground and functionally important intermediate states to identify proton translocation events and perform their structural assignment. Our true-atomic-resolution structures of the light-driven proton pump bacteriorhodopsin, a model in studies of proton transport, show that CHBs and LBHBs not only serve as proton pathways, but also are indispensable for long-range communications, signaling and proton storage in proteins. The complete picture of CHBs and LBHBs discloses their multifunctional roles in providing protein functions and presents a consistent picture of proton transport and storage resolving long-standing debates and controversies.
Collapse
|
8
|
Thomas DA, Taccone M, Ober K, Mucha E, Meijer G, von Helden G. Helium Nanodroplet Infrared Action Spectroscopy of the Proton-Bound Dimer of Hydrogen Sulfate and Formate: Examining Nuclear Quantum Effects. J Phys Chem A 2021; 125:9279-9287. [PMID: 34652165 PMCID: PMC8558860 DOI: 10.1021/acs.jpca.1c05705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The proton-bound dimer of hydrogen sulfate and formate is an archetypal structure for ionic hydrogen-bonding complexes that contribute to biogenic aerosol nucleation. Of central importance for the structure and properties of this complex is the location of the bridging proton connecting the two conjugate base moieties. The potential energy surface for bridging proton translocation features two local minima, with the proton localized at either the formate or hydrogen sulfate moiety. However, electronic structure methods reveal a shallow potential energy surface governing proton translocation, with a barrier on the order of the zero-point energy. This shallow potential complicates structural assignment and necessitates a consideration of nuclear quantum effects. In this work, we probe the structure of this complex and its isotopologues, utilizing infrared (IR) action spectroscopy of ions captured in helium nanodroplets. The IR spectra indicate a structure in which a proton is shared between the hydrogen sulfate and formate moieties, HSO4-···H+···-OOCH. However, because of the nuclear quantum effects and vibrational anharmonicities associated with the shallow potential for proton translocation, the extent of proton displacement from the formate moiety remains unclear, requiring further experiments or more advanced theoretical treatments for additional insight.
Collapse
Affiliation(s)
- Daniel A Thomas
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Martín Taccone
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Katja Ober
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Eike Mucha
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Gerard Meijer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Gert von Helden
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
9
|
Nakai H, Takemura T, Ono J, Nishimura Y. Quantum-Mechanical Molecular Dynamics Simulations on Secondary Proton Transfer in Bacteriorhodopsin Using Realistic Models. J Phys Chem B 2021; 125:10947-10963. [PMID: 34582194 DOI: 10.1021/acs.jpcb.1c06231] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bacteriorhodopsin (BR) transports a proton from intracellular to extracellular (EC) sites through five proton transfers. The second proton transfer is the release of an excess proton stored in BR into the EC medium, and an atomistic understanding of this whole process has remained unexplored due to its ubiquitous environment. Here, fully quantum mechanical (QM) molecular dynamics (MD) and metadynamics (MTD) simulations for this process were performed at the divide-and-conquer density-functional tight-binding level using realistic models (∼50000 and ∼20000 atoms) based on the time-resolved photointermediate structures from an X-ray free electron laser. Regarding the proton storage process, the QM-MD/MTD simulations confirmed the Glu-shared mechanism, in which an excess proton is stored between Glu194 and Glu204, and clarified that the activation occurs by localizing the proton at Glu204 in the photocycle. Furthermore, the QM-MD/MTD simulations elucidated a release pathway from Glu204 through Ser193 to the EC water molecules and clarified that the proton release starts at ∼250 μs. In the ubiquitous proton diffusion in the EC medium, the transient proton receptors predicted experimentally were assigned to carboxylates in Glu9 and Glu74. Large-scale QM-MD/MTD simulations beyond the conventional sizes, which provided the above findings and confirmations, were possible by adopting our Dcdftbmd program.
Collapse
Affiliation(s)
- Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan.,Waseda Research Institute for Science and Engineering (WISE), Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan.,Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
| | - Toshiaki Takemura
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Junichi Ono
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan.,Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
10
|
Maag D, Mast T, Elstner M, Cui Q, Kubař T. O to bR transition in bacteriorhodopsin occurs through a proton hole mechanism. Proc Natl Acad Sci U S A 2021; 118:e2024803118. [PMID: 34561302 PMCID: PMC8488608 DOI: 10.1073/pnas.2024803118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 12/27/2022] Open
Abstract
Extensive classical and quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations are used to establish the structural features of the O state in bacteriorhodopsin (bR) and its conversion back to the bR ground state. The computed free energy surface is consistent with available experimental data for the kinetics and thermodynamics of the O to bR transition. The simulation results highlight the importance of the proton release group (PRG, consisting of Glu194/204) and the conserved arginine 82 in modulating the hydration level of the protein cavity. In particular, in the O state, deprotonation of the PRG and downward rotation of Arg82 lead to elevated hydration level and a continuous water network that connects the PRG to the protonated Asp85. Proton exchange through this water network is shown by ∼0.1-μs semiempirical QM/MM free energy simulations to occur through the generation and propagation of a proton hole, which is relayed by Asp212 and stabilized by Arg82. This mechanism provides an explanation for the observation that the D85S mutant of bacteriorhodopsin pumps chloride ions. The electrostatics-hydration coupling mechanism and the involvement of all titration states of water are likely applicable to many biomolecules involved in bioenergetic transduction.
Collapse
Affiliation(s)
- Denis Maag
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Thilo Mast
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Marcus Elstner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute for Biological Interfaces, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, MA 02215
- Department of Physics, Boston University, Boston, MA 02215
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Tomáš Kubař
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany;
| |
Collapse
|
11
|
Yagi K, Sugita Y. Anharmonic Vibrational Calculations Based on Group-Localized Coordinates: Applications to Internal Water Molecules in Bacteriorhodopsin. J Chem Theory Comput 2021; 17:5007-5020. [PMID: 34296615 PMCID: PMC10986902 DOI: 10.1021/acs.jctc.1c00060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An efficient anharmonic vibrational method is developed exploiting the locality of molecular vibration. Vibrational coordinates localized to a group of atoms are employed to divide the potential energy surface (PES) of a system into intra- and inter-group contributions. Then, the vibrational Schrödinger equation is solved based on a PES, in which the inter-group coupling is truncated at the harmonic level while accounting for the intra-group anharmonicity. The method is applied to a pentagonal hydrogen bond network (HBN) composed of internal water molecules and charged residues in a membrane protein, bacteriorhodopsin. The PES is calculated by the quantum mechanics/molecular mechanics (QM/MM) calculation at the level of B3LYP-D3/aug-cc-pVDZ. The infrared (IR) spectrum is computed using a set of coordinates localized to each water molecule and amino acid residue by second-order vibrational quasi-degenerate perturbation theory (VQDPT2). Benchmark calculations show that the proposed method yields the N-D/O-D stretching frequencies with an error of 7 cm-1 at the cost reduced by more than five times. In contrast, the harmonic approximation results in a severe error of 150 cm-1. Furthermore, the size of QM regions is carefully assessed to find that the QM regions should include not only the pentagonal HBN itself but also its HB partners. VQDPT2 calculations starting from transient structures obtained by molecular dynamics simulations have shown that the structural sampling has a significant impact on the calculated IR spectrum. The incorporation of anharmonicity, sufficiently large QM regions, and structural samplings are of essential importance to reproduce the experimental IR spectrum. The computational spectrum paves the way for decoding the IR signal of strong HBNs and helps elucidate their functional roles in biomolecules.
Collapse
Affiliation(s)
- Kiyoshi Yagi
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuji Sugita
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Computational
Biophysics Research Team, RIKEN Center for
Computational Science, 7-1-26 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Laboratory
for Biomolecular Function Simulation, RIKEN
Center for Biosystems Dynamics Research, 1-6-5 Minatojima-Minamimachi,
Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
12
|
Tripathi R, Durán Caballero L, Pérez de Tudela R, Hölzl C, Marx D. Unveiling Zwitterionization of Glycine in the Microhydration Limit. ACS OMEGA 2021; 6:12676-12683. [PMID: 34056419 PMCID: PMC8154221 DOI: 10.1021/acsomega.1c00869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Charge separation under solvation stress conditions is a fundamental process that comes in many forms in doped water clusters. Yet, the mechanism of intramolecular charge separation, where constraints due to the molecular structure might be intricately tied to restricted solvation structures, remains largely unexplored. Microhydrated amino acids are such paradigmatic molecules. Ab initio simulations are carried out at 300 K in the frameworks of metadynamics sampling and thermodynamic integration to map the thermal mechanisms of zwitterionization using Gly(H2O) n with n = 4 and 10. In both cases, a similar water-mediated proton transfer chain mechanism is observed; yet, detailed analyses of thermodynamics and kinetics demonstrate that the charge-separated zwitterion is the preferred species only for n = 10 mainly due to kinetic stabilization. Structural analyses disclose that bifurcated H-bonded water bridges, connecting the cationic and anionic sites in the fluctuating microhydration network at room temperature, are enhanced in the transition-state ensemble exclusively for n = 10 and become overwhelmingly abundant in the stable zwitterion. The findings offer potential insights into charge separation under solvation stress conditions beyond the present example.
Collapse
|
13
|
Ono J, Imai M, Nishimura Y, Nakai H. Hydroxide Ion Carrier for Proton Pumps in Bacteriorhodopsin: Primary Proton Transfer. J Phys Chem B 2020; 124:8524-8539. [DOI: 10.1021/acs.jpcb.0c05507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Junichi Ono
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
| | - Minori Imai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
14
|
Abstract
Infrared difference spectroscopy probes vibrational changes of proteins upon their perturbation. Compared with other spectroscopic methods, it stands out by its sensitivity to the protonation state, H-bonding, and the conformation of different groups in proteins, including the peptide backbone, amino acid side chains, internal water molecules, or cofactors. In particular, the detection of protonation and H-bonding changes in a time-resolved manner, not easily obtained by other techniques, is one of the most successful applications of IR difference spectroscopy. The present review deals with the use of perturbations designed to specifically change the protein between two (or more) functionally relevant states, a strategy often referred to as reaction-induced IR difference spectroscopy. In the first half of this contribution, I review the technique of reaction-induced IR difference spectroscopy of proteins, with special emphasis given to the preparation of suitable samples and their characterization, strategies for the perturbation of proteins, and methodologies for time-resolved measurements (from nanoseconds to minutes). The second half of this contribution focuses on the spectral interpretation. It starts by reviewing how changes in H-bonding, medium polarity, and vibrational coupling affect vibrational frequencies, intensities, and bandwidths. It is followed by band assignments, a crucial aspect mostly performed with the help of isotopic labeling and site-directed mutagenesis, and complemented by integration and interpretation of the results in the context of the studied protein, an aspect increasingly supported by spectral calculations. Selected examples from the literature, predominately but not exclusively from retinal proteins, are used to illustrate the topics covered in this review.
Collapse
|