1
|
Moudgal N, Arhin G, Frank AT. Using Unassigned NMR Chemical Shifts to Model RNA Secondary Structure. J Phys Chem A 2022; 126:2739-2745. [PMID: 35470661 DOI: 10.1021/acs.jpca.2c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NMR-derived chemical shifts are sensitive probes of RNA structure. However, the need to assign NMR spectra hampers their utility as a direct source of structural information. In this report, we describe a simple method that uses unassigned 2D NMR spectra to model the secondary structure of RNAs. As in the case of assigned chemical shifts, we could use unassigned chemical shift data to reweight conformational libraries such that the highest weighted structure closely resembles their reference NMR structure. Furthermore, the application of our approach to the 3'- and 5'-UTR of the SARS-CoV-2 genome yields structures that are, for the most part, consistent with the secondary structure models derived from chemical probing data. Therefore, we expect the framework we describe here will be useful as a general strategy for rapidly generating preliminary structural RNA models directly from unassigned 2D NMR spectra. As we demonstrated for the 337-nt and 472-nt UTRs of SARS-CoV-2, our approach could be especially valuable for modeling the secondary structures of large RNA.
Collapse
Affiliation(s)
- Neel Moudgal
- Saline High School, 1300 Campus Pkwy, Saline, Michigan 48176, United States
| | - Grace Arhin
- Biophysics Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Aaron T Frank
- Biophysics Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States.,Chemistry Department, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Liu Y, Kotar A, Hodges TL, Abdallah K, Taleb MH, Bitterman BA, Jaime S, Schaubroeck KJ, Mathew E, Morgenstern NW, Lohmeier A, Page JL, Ratanapanichkich M, Arhin G, Johnson BL, Cherepanov S, Moss SC, Zuniga G, Tilson NJ, Yeoh ZC, Johnson BA, Keane SC. NMR chemical shift assignments of RNA oligonucleotides to expand the RNA chemical shift database. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:479-490. [PMID: 34449019 DOI: 10.1007/s12104-021-10049-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
RNAs play myriad functional and regulatory roles in the cell. Despite their significance, three-dimensional structure elucidation of RNA molecules lags significantly behind that of proteins. NMR-based studies are often rate-limited by the assignment of chemical shifts. Automation of the chemical shift assignment process can greatly facilitate structural studies, however, accurate chemical shift predictions rely on a robust and complete chemical shift database for training. We searched the Biological Magnetic Resonance Data Bank (BMRB) to identify sequences that had no (or limited) chemical shift information. Here, we report the chemical shift assignments for 12 RNA hairpins designed specifically to help populate the BMRB.
Collapse
Affiliation(s)
- Yaping Liu
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Anita Kotar
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
- Current Address: Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Tracy L Hodges
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Kyrillos Abdallah
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Mallak H Taleb
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Brayden A Bitterman
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Sara Jaime
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Kyle J Schaubroeck
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Ethan Mathew
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Nicholas W Morgenstern
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Anthony Lohmeier
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Jordan L Page
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Matt Ratanapanichkich
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Grace Arhin
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Breanna L Johnson
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Stanislav Cherepanov
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Stephen C Moss
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Gisselle Zuniga
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Nicholas J Tilson
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Zoe C Yeoh
- Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Bruce A Johnson
- Structural Biology Initiative, CUNY Advanced Science Research Center, 85 St. Nicholas Terrace, New York, NY, 10031, USA
| | - Sarah C Keane
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA.
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Zhang K, Frank AT. Probabilistic Modeling of RNA Ensembles Using NMR Chemical Shifts. J Phys Chem B 2021; 125:9970-9978. [PMID: 34449236 DOI: 10.1021/acs.jpcb.1c05651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
NMR-derived chemical shifts are structural fingerprints that are sensitive to the underlying conformational distributions of molecules. Thus, chemical shift data are now routinely used to infer the dynamical or conformational ensembles of peptides and proteins. However, for RNAs, techniques for inferring their conformational ensembles from chemical shift data have received less attention. Here, we used chemical shift data and the Bayesian/maximum entropy (BME) approach to model the secondary structure ensembles of several single-stranded RNAs. Inspection of the resulting ensembles indicates that the secondary structure of the highest weighted (most probable) conformer in the ensemble typically resembled the known NMR structure. Furthermore, using apo chemical shifts measured for the HIV-1 TAR RNA, we found that our framework reproduces the expected structure yet predicts the existence of a previously unobserved base pair, which we speculate may be sampled transiently. We expect that the chemical shift-based BME (CS-BME) framework we describe here should find utility as a general strategy for modeling RNA ensembles using chemical shift data.
Collapse
Affiliation(s)
- Kexin Zhang
- Chemistry Department, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Aaron T Frank
- Biophysics Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Zhang K, Abdallah K, Ajmera P, Finos K, Looka A, Mekhael J, Frank AT. CS-Annotate: A Tool for Using NMR Chemical Shifts to Annotate RNA Structure. J Chem Inf Model 2021; 61:1545-1549. [PMID: 33797909 DOI: 10.1021/acs.jcim.1c00006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here, we introduce CS-Annotate, a tool that uses assigned NMR chemical shifts to annotate structural features in RNA. At its core, CS-Annotate is a deployment of a multitask deep learning model that simultaneously classifies the solvent exposure, base-stacking and -pairing status, and conformation of individual RNA residues from their chemical shift fingerprint. Here, we briefly describe how we trained and tested the classifier and demonstrate its application to a model RNA system. CS-Annotate can be accessed via the SMALTR (Structure-based MAchine Learning Tools for RNA) Science Gateway (smaltr.org).
Collapse
Affiliation(s)
- Kexin Zhang
- Chemistry Department, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Kyrillos Abdallah
- Biophysics Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Pujan Ajmera
- Biophysics Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Kyle Finos
- Biophysics Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Andrew Looka
- Biophysics Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Joseph Mekhael
- Biophysics Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Aaron T Frank
- Biophysics Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|