1
|
Jäckel A, Mach C, Schwenson L, Castro-Camus E, Liebermeister L, Kohlhaas RB, Koch M. Computationally efficient multi-layer thickness determination using sparse CW THz spectroscopy. OPTICS EXPRESS 2025; 33:14812-14824. [PMID: 40219408 DOI: 10.1364/oe.550923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/20/2025] [Indexed: 04/14/2025]
Abstract
Continuous wave (CW) terahertz spectroscopy systems are a proven and convenient solution for industrial non-destructive testing and multi-layer thickness determination. For these systems to find use in real-time inline monitoring applications, a high acquisition and data evaluation rate is required. One approach that can increase and potentially enable kHz acquisition rates is to scan through only a few selected frequencies instead of a full spectrum. However, the data analysis can become a bottleneck when realizing measurement systems capable of operating at these speeds. Here we show the feasibility of extracting multi-layer thicknesses from a sparsely sampled spectrum by using a real-time evaluation scheme capable of runtimes below a millisecond with a thickness uncertainty comparable to a full spectrum evaluation. This is achieved by reducing the number of computations by three orders of magnitude. The proposed measurement scheme requires complete knowledge of the sample composition and the refractive index of each layer. Additionally, achieving these high evaluation rates assumes that individual layer thicknesses deviate by no more than 200 µm from their nominal values. However, both conditions are often met in an industrial setting. The sparse evaluation is demonstrated on a three layer sample, the achieved standard deviation of the layer thicknesses remains below 5 µm for each layer. These measurements confirm the effectiveness of the sparse sampling approach for THz spectroscopy and demonstrate the ability to address industrial applications with measurement rates in the kilohertz range.
Collapse
|
2
|
Kitamura A, Matsuzoe Y, Okitsu N, Sato H. Quantitative analysis of branched high-density polyethylene content using far-infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125492. [PMID: 39637566 DOI: 10.1016/j.saa.2024.125492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
This study describes a simple method for estimating the content of branched high-density polyethylene using spectroscopy including the terahertz region. Herein, we prepared samples by blending high-density polyethylene with a blend ratio of 0 %-100 % of branched and linear polyethylene. Then, the terahertz absorption spectra of these samples were recorded from 600 to 50 cm-1 (18-1.5 THz), and a calibration model based on absorption spectra and blend ratios was created using multivariate analysis. A very high correlation coefficient (R2 = 1) was obtained between the model estimate and the measured values, confirming the validity of this method.
Collapse
Affiliation(s)
- Ayano Kitamura
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada, Kobe, Hyogo 657-8501, Japan; Corporate Production Technology, Asahi Kasei Corporation, 2-1 Samejima, Fuji, Shizuoka, Japan
| | - Yuji Matsuzoe
- Corporate Production Technology, Asahi Kasei Corporation, 2-1 Samejima, Fuji, Shizuoka, Japan
| | - Naoya Okitsu
- Environmental Solutions SBU, Asahi Kasei Corporation, 2767-11 Kojimashionasuazaniihama, Kurashiki, Okayama, Japan
| | - Harumi Sato
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
3
|
Ge H, Sun Z, Jiang Y, Wu X, Jia Z, Cui G, Zhang Y. Recent Advances in THz Detection of Water. Int J Mol Sci 2023; 24:10936. [PMID: 37446112 DOI: 10.3390/ijms241310936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The frequency range of terahertz waves (THz waves) is between 0.1 and 10 THz and they have properties such as low energy, penetration, transients, and spectral fingerprints, which are especially sensitive to water. Terahertz, as a frontier technology, have great potential in interpreting the structure of water molecules and detecting biological water conditions, and the use of terahertz technology for water detection is currently frontier research, which is of great significance. Firstly, this paper introduces the theory of terahertz technology and summarizes the current terahertz systems used for water detection. Secondly, an overview of theoretical approaches, such as the relaxation model and effective medium theory related to water detection, the relationship between water molecular networks and terahertz spectra, and the research progress of the terahertz detection of water content and water distribution visualization, are elaborated. Finally, the challenge and outlook of applications related to the terahertz wave detection of water are discussed. The purpose of this paper is to explore the research domains on water and its related applications using terahertz technology, as well as provide a reference for innovative applications of terahertz technology in moisture detection.
Collapse
Affiliation(s)
- Hongyi Ge
- Key Laboratory of Grain Information Processing & Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhenyu Sun
- Key Laboratory of Grain Information Processing & Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yuying Jiang
- Key Laboratory of Grain Information Processing & Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou 450001, China
| | - Xuyang Wu
- Key Laboratory of Grain Information Processing & Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhiyuan Jia
- Key Laboratory of Grain Information Processing & Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Guangyuan Cui
- Key Laboratory of Grain Information Processing & Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yuan Zhang
- Key Laboratory of Grain Information Processing & Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
4
|
Zhu Z, Bian Y, Zhang X, Zeng R, Yang B. Study on the crystallization behavior and conformation adjustment scale of poly(lactic acid) in the terahertz frequency range. Phys Chem Chem Phys 2023; 25:8472-8481. [PMID: 36883295 DOI: 10.1039/d3cp00208j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The observed properties of crystalline polymers are determined by their internal structure, which in turn is the result of their different crystallization behaviors. Here, we investigate the crystallization behavior of poly(lactic acid) (PLA) by terahertz time-domain spectroscopy (THz-TDS) at varied temperatures. We find that the changes in the chain packing and conformation of PLA are characterized by THz spectroscopy. Combining X-ray diffraction (XRD) and infrared spectroscopy (IR), we attributed the blue-shift of the THz peak to the tightness of the chain packing, while its absorption enhancement is caused by the conformation transition. The effects of chain packing and chain conformation on the characteristic peak are phased. Furthermore, absorption discontinuities of the characteristic peaks of PLA crystallized at different temperatures are observed, which originated from differences in the degree of conformational transition caused by different thermal energies. We find that the crystallization temperature at which the absorption mutation of PLA occurs corresponds to the temperature at which the motion of the segment and molecular chain is excited, respectively. At these two temperatures, PLA exhibits different scales of conformational transitions leading to stronger absorption and larger absorption changes at higher crystallization temperatures. The results demonstrate that the driving force of PLA crystallization is indeed from changes in chain packing and chain conformation, and the molecular motion scale can also be characterized by THz spectroscopy.
Collapse
Affiliation(s)
- Zhenqi Zhu
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Yujing Bian
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Xun Zhang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Ruonan Zeng
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Bin Yang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
5
|
Differences in intermolecular interactions between 4-hydroxycoumarin and 7-hydroxycoumarin studied by terahertz spectroscopy and density functional theory. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Li Y, Li C, Chen M, Liu Z, Zeng M, Hu Y. Sous-vide cooking endows a better microstructure for hairtail (Trichiurus lepturus) than traditional cooking: Mechanisms of moisture migration. J Food Sci 2022; 87:3953-3964. [PMID: 35912642 DOI: 10.1111/1750-3841.16260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022]
Abstract
Sous-vide cooking is a highly praised method used to cook muscle foods because of its desired effect of providing better sensory properties by maintaining texture. In this study, we further explored the effect of water on texture by revealing the mechanisms of moisture migration. Low field nuclear magnetic resonance (LF-NMR) showed that the nonflowing water in sous-vide cooking hairtail was 2.36 ± 0.33% higher than that in traditional cooking. Magnetic resonance imaging (MRI) was used to clarify the law of moisture migration induced by temperature, and the moisture migration of the sous-vide cooking hairtail was slower during the holding heating stage. The microstructure explained the change rules of the texture. The degree of change was consistent with the moisture migration level. Digitalizing analysis quantitatively verified the effect of sous-vide cooking on the hairtail microstructure. The low moisture migration rate of sous-vide cooking resulted in a less damaged microstructure of the hairtail, manifesting as a desirable texture. PRACTICAL APPLICATION: LF-NMR and MRI showed that sous-vide hairtails exhibited a lower moisture migration rate. The holding heating stage only slightly changed the microstructure of the hairtail. The digitalizing analysis confirmed the moisture migration mechanisms. Heat-induced protein denaturation was closely related to the water state.
Collapse
Affiliation(s)
- Yuan Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266100, China.,College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Cijian Li
- School of optical and electronic information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Meiyu Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zunying Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yaqin Hu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.,College of Food Science and Engineering, Yazhou Bay Innovation Institute; Hainan Tropical Ocean University; Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, 572022, China
| |
Collapse
|
7
|
Nishida K, Anada T, Tanaka M. Roles of interfacial water states on advanced biomedical material design. Adv Drug Deliv Rev 2022; 186:114310. [PMID: 35487283 DOI: 10.1016/j.addr.2022.114310] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
Abstract
When biomedical materials come into contact with body fluids, the first reaction that occurs on the material surface is hydration; proteins are then adsorbed and denatured on the hydrated material surface. The amount and degree of denaturation of adsorbed proteins affect subsequent cell behavior, including cell adhesion, migration, proliferation, and differentiation. Biomolecules are important for understanding the interactions and biological reactions of biomedical materials to elucidate the role of hydration in biomedical materials and their interaction partners. Analysis of the water states of hydrated materials is complicated and remains controversial; however, knowledge about interfacial water is useful for the design and development of advanced biomaterials. Herein, we summarize recent findings on the hydration of synthetic polymers, supramolecular materials, inorganic materials, proteins, and lipid membranes. Furthermore, we present recent advances in our understanding of the classification of interfacial water and advanced polymer biomaterials, based on the intermediate water concept.
Collapse
Affiliation(s)
- Kei Nishida
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Japan(1)
| | - Takahisa Anada
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan.
| |
Collapse
|
8
|
Mitryukovskiy S, Vanpoucke DEP, Bai Y, Hannotte T, Lavancier M, Hourlier D, Roos G, Peretti R. On the influence of water on THz vibrational spectral features of molecular crystals. Phys Chem Chem Phys 2022; 24:6107-6125. [PMID: 35212691 DOI: 10.1039/d1cp03261e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The nanoscale structure of molecular assemblies plays a major role in many (μ)-biological mechanisms. Molecular crystals are one of the most simple of these assemblies and are widely used in a variety of applications from pharmaceuticals and agrochemicals, to nutraceuticals and cosmetics. The collective vibrations in such molecular crystals can be probed using terahertz spectroscopy, providing unique characteristic spectral fingerprints. However, the association of the spectral features to the crystal conformation, crystal phase and its environment is a difficult task. We present a combined computational-experimental study on the incorporation of water in lactose molecular crystals, and show how simulations can be used to associate spectral features in the THz region to crystal conformations and phases. Using periodic DFT simulations of lactose molecular crystals, the role of water in the observed lactose THz spectrum is clarified, presenting both direct and indirect contributions. A specific experimental setup is built to allow the controlled heating and corresponding dehydration of the sample, providing the monitoring of the crystal phase transformation dynamics. Besides the observation that lactose phases and phase transformation appear to be more complex than previously thought - including several crystal forms in a single phase and a non-negligible water content in the so-called anhydrous phase - we draw two main conclusions from this study. Firstly, THz modes are spread over more than one molecule and require periodic computation rather than a gas-phase one. Secondly, hydration water does not only play a perturbative role but also participates in the facilitation of the THz vibrations.
Collapse
Affiliation(s)
- Sergey Mitryukovskiy
- Institut d'Electronique de Microélectronique et de Nanotechnologie, Université Lille, CNRS, 59652 Villeneuve d'Ascq, France.
| | - Danny E P Vanpoucke
- IMO, Hasselt University, 3590 Diepenbeek, Belgium./AMIBM, Maastricht University, 6167 Geleen, The Netherlands
| | - Yue Bai
- Institut d'Electronique de Microélectronique et de Nanotechnologie, Université Lille, CNRS, 59652 Villeneuve d'Ascq, France.
| | - Théo Hannotte
- Institut d'Electronique de Microélectronique et de Nanotechnologie, Université Lille, CNRS, 59652 Villeneuve d'Ascq, France.
| | - Mélanie Lavancier
- Institut d'Electronique de Microélectronique et de Nanotechnologie, Université Lille, CNRS, 59652 Villeneuve d'Ascq, France.
| | - Djamila Hourlier
- Institut d'Electronique de Microélectronique et de Nanotechnologie, Université Lille, CNRS, 59652 Villeneuve d'Ascq, France.
| | - Goedele Roos
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Romain Peretti
- Institut d'Electronique de Microélectronique et de Nanotechnologie, Université Lille, CNRS, 59652 Villeneuve d'Ascq, France.
| |
Collapse
|
9
|
Hamada M, Iwata T, Fuki M, Kandori H, Weber S, Kobori Y. Orientations and water dynamics of photoinduced secondary charge-separated states for magnetoreception by cryptochrome. Commun Chem 2021; 4:141. [PMID: 36697801 PMCID: PMC9814139 DOI: 10.1038/s42004-021-00573-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/02/2021] [Indexed: 01/28/2023] Open
Abstract
In the biological magnetic compass, blue-light photoreceptor protein of cryptochrome is thought to conduct the sensing of the Earth's magnetic field by photoinduced sequential long-range charge-separation (CS) through a cascade of tryptophan residues, WA(H), WB(H) and WC(H). Mechanism of generating the weak-field sensitive radical pair (RP) is poorly understood because geometries, electronic couplings and their modulations by molecular motion have not been investigated in the secondary CS states generated prior to the terminal RP states. In this study, water dynamics control of the electronic coupling is revealed to be a key concept for sensing the direction of weak magnetic field. Geometry and exchange coupling (singlet-triplet energy gap: 2J) of photoinduced secondary CS states composed of flavin adenine dinucleotide radical anion (FAD-•) and radical cation WB(H)+• in the cryptochrome DASH from Xenopus laevis were clarified by time-resolved electron paramagnetic resonance. We found a time-dependent energetic disorder in 2J and was interpreted by a trap CS state capturing one reorientated water molecule at 120 K. Enhanced electron-tunneling by water-libration was revealed for the terminal charge-separation event at elevated temperature. This highlights importance of optimizing the electronic coupling for regulation of the anisotropic RP yield on the possible magnetic compass senses.
Collapse
Affiliation(s)
- Misato Hamada
- grid.31432.370000 0001 1092 3077Department of Chemistry, Graduate School of Science, Kobe University, 1‒1 Rokkodai‒cho, Nada‒ku, Kobe, 657‒8501 Japan
| | - Tatsuya Iwata
- grid.265050.40000 0000 9290 9879Department of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274‒8510 Japan
| | - Masaaki Fuki
- grid.31432.370000 0001 1092 3077Department of Chemistry, Graduate School of Science, Kobe University, 1‒1 Rokkodai‒cho, Nada‒ku, Kobe, 657‒8501 Japan ,grid.31432.370000 0001 1092 3077Molecular Photoscience Research Center, Kobe University, 1‒1 Rokkodai‒cho, Nada‒ku, Kobe, 657‒8501 Japan
| | - Hideki Kandori
- grid.47716.330000 0001 0656 7591Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555 Japan ,grid.47716.330000 0001 0656 7591OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555 Japan
| | - Stefan Weber
- grid.5963.9Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Yasuhiro Kobori
- grid.31432.370000 0001 1092 3077Department of Chemistry, Graduate School of Science, Kobe University, 1‒1 Rokkodai‒cho, Nada‒ku, Kobe, 657‒8501 Japan ,grid.31432.370000 0001 1092 3077Molecular Photoscience Research Center, Kobe University, 1‒1 Rokkodai‒cho, Nada‒ku, Kobe, 657‒8501 Japan
| |
Collapse
|
10
|
Yamamoto Y, Hoshina H, Sato H. Differences in Intermolecular Interactions and Flexibility between Poly(ethylene terephthalate) and Poly(butylene terephthalate) Studied by Far-Infrared/Terahertz and Low-Frequency Raman Spectroscopy. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yumiko Yamamoto
- Graduate School of Human Development and Environment, Kobe University, Tsurukabuto 3-11, Nada, Kobe 657-8501 Japan
| | - Hiromichi Hoshina
- RIKEN Center for Advanced Photonics, 519-1399 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-0845, Japan
| | - Harumi Sato
- Graduate School of Human Development and Environment, Kobe University, Tsurukabuto 3-11, Nada, Kobe 657-8501 Japan
- Molecular Photoscience Research Center, Kobe University, Rokkodaicho1-1,
Nada, Kobe 657-8501, Japan
| |
Collapse
|
11
|
Kobori Y, Fuki M, Nakamura S, Hasobe T. Geometries and Terahertz Motions Driving Quintet Multiexcitons and Ultimate Triplet–Triplet Dissociations via the Intramolecular Singlet Fissions. J Phys Chem B 2020; 124:9411-9419. [DOI: 10.1021/acs.jpcb.0c07984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yasuhiro Kobori
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Masaaki Fuki
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Shunta Nakamura
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| |
Collapse
|
12
|
Brehm M, Thomas M, Gehrke S, Kirchner B. TRAVIS—A free analyzer for trajectories from molecular simulation. J Chem Phys 2020; 152:164105. [DOI: 10.1063/5.0005078] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- M. Brehm
- Institut für Chemie, Martin-Luther-Universität Halle–Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany
| | - M. Thomas
- Institut für Chemie, Martin-Luther-Universität Halle–Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany
| | - S. Gehrke
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| | - B. Kirchner
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| |
Collapse
|