1
|
Penfield J, Zhang L. Interaction and dynamics of chemokine receptor CXCR4 binding with CXCL12 and hBD-3. Commun Chem 2024; 7:205. [PMID: 39271963 PMCID: PMC11399392 DOI: 10.1038/s42004-024-01280-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Chemokine receptor CXCR4 is involved in diverse diseases. A comparative study was conducted on CXCR4 embedded in a POPC lipid bilayer binding with CXCL12 in full and truncated forms, hBD-3 in wildtype, analog, and mutant forms based on in total 63 µs all-atom MD simulations. The initial binding structures of CXCR4 with ligands were predicted using HADDOCK docking or random-seed method, then μs-long simulations were performed to refine the structures. CXCR4&ligand binding structures predicted agree with available literature data. Both kinds of ligands bind stably to the N-terminus, extracellular loop 2 (ECL2), and ECL3 regions of CXCR4; the C2-C3 (K32-R38) region and occasionally the head of hBD-3 bind stably with CXCR4. hBD-3 analogs with Cys11-Cys40 disulfide bond can activate CXCR4 based on the Helix3-Helix6 distance calculation, but not other analogs or mutant. The results provide insight into understanding the dynamics and activation mechanism of CXCR4 receptor binding with different ligands.
Collapse
Affiliation(s)
- Jackson Penfield
- Chemical Engineering Department, Tennessee Technological University, Cookeville, TN, 38505, USA
| | - Liqun Zhang
- Chemical Engineering Department, University of Rhode Island, Kingston, RI, 02881, USA.
| |
Collapse
|
2
|
Chowdhury UD, Paul A, Bhargava BL. The effect of lipid composition on the dynamics of tau fibrils. Proteins 2022; 90:2103-2115. [DOI: 10.1002/prot.26401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Unmesh Dutta Chowdhury
- School of Chemical Sciences National Institute of Science Education & Research‐Bhubaneswar, OCC of Homi Bhabha National Institute Khurda Odisha India
| | - Arnav Paul
- School of Chemical Sciences National Institute of Science Education & Research‐Bhubaneswar, OCC of Homi Bhabha National Institute Khurda Odisha India
| | - B. L. Bhargava
- School of Chemical Sciences National Institute of Science Education & Research‐Bhubaneswar, OCC of Homi Bhabha National Institute Khurda Odisha India
| |
Collapse
|
3
|
Sikdar S, Banerjee M, Vemparala S. Role of Disulphide Bonds in Membrane Partitioning of a Viral Peptide. J Membr Biol 2022; 255:129-142. [PMID: 35218393 PMCID: PMC8881898 DOI: 10.1007/s00232-022-00218-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/02/2022] [Indexed: 01/22/2023]
Abstract
The importance of disulphide bond in mediating viral peptide entry into host cells is well known. In the present work, we elucidate the role of disulphide (SS) bond in partitioning mechanism of membrane-active Hepatitis A Virus-2B (HAV-2B) peptide, which harbours three cysteine residues promoting formation of multiple SS-bonded states. The inclusion of SS-bond not only results in a compact conformation but also induces distorted α-helical hairpin geometry in comparison to SS-free state. Owing to these, the hydrophobic residues get buried, restricting the insertion of SS-bonded HAV-2B peptide into lipid packing defects and thus the partitioning of the peptide is completely or partly abolished. In this way, the disulphide bond can potentially regulate the partitioning of HAV-2B peptide such that the membrane remodelling effects of this viral peptide are significantly reduced. The current findings may have potential implications in drug designing, targeting the HAV-2B protein by promoting disulphide bond formation within its membrane-active region.
Collapse
Affiliation(s)
- Samapan Sikdar
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai, 600113, India. .,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai, 600113, India. .,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
4
|
Yu SS, Zhao ZH, Gong XF, Fan XL, Lin ZH, Chen J. Antimicrobial and immunomodulatory activity of beta-defensin from the Chinese spiny frog (Quasipaa spinosa). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104264. [PMID: 34551359 DOI: 10.1016/j.dci.2021.104264] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/18/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
The β-defensins are important components of the vertebrate innate immune system. While mammalian β-defensins have wide-ranging antibacterial and immunomodulatory activities, those of amphibians remain largely uncharacterised. In this study, β-defensin cDNA was identified from the skin transcriptome of the Chinese spiny frog Quasipaa spinosa. This β-defensin (QS-BD) consists of a signal and a mature peptide. Sequence alignments with other amphibian β-defensins showed conservation of the functional mature peptide and that its closest relative is β-defensin from Zhangixalus puerensis. Synthetic QS-BD showed antibacterial activity against Vibrio vulnificus, Vibrio harveyi, Streptococcus iniae, and Aeromonas hydrophila. QS-BD showed bactericidal activity by destroying the cell membrane integrity, but did not hydrolyse genomic DNA. QS-BD treatment promoted respiratory bursts and upregulated the expression of interleukin-1β and tumour necrosis factor-α in the murine leukemic monocyte/macrophage cell line RAW264.7. This is the first demonstration of immunomodulatory activity by an amphibian β-defensin.
Collapse
Affiliation(s)
- Shui-Sheng Yu
- College of Ecology, Lishui University, Lishui, 323000, China; Ecological Forestry Development Center of Suichang County, Lishui, 323000, China
| | - Zeng-Hui Zhao
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Xiao-Fei Gong
- College of Ecology, Lishui University, Lishui, 323000, China; Ecological Forestry Development Center of Suichang County, Lishui, 323000, China
| | - Xiao-Li Fan
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Zhi-Hua Lin
- College of Ecology, Lishui University, Lishui, 323000, China.
| | - Jie Chen
- College of Ecology, Lishui University, Lishui, 323000, China.
| |
Collapse
|
5
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
6
|
Brewer A, Zhang L. Binding free energy calculation of human beta defensin 3 with negatively charged lipid bilayer using free energy perturbation method. Biophys Chem 2021; 277:106662. [PMID: 34399250 DOI: 10.1016/j.bpc.2021.106662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/05/2023]
Abstract
Human β defensin type 3 (hBD-3) is a cationic peptide having strong antimicrobial activities even at high salt concentrations. The conserved sequence is believed to contribute to its unique antibacterial activities. To design novel drugs based on hBD-3, predicting the binding free energy contribution of each residue on hBD-3 with bacterial membrane is important. Firstly, the stable binding structure of hBD-3 dimer in analog form bound on POPG lipid bilayer was predicted using NAMD simulations, which was confirmed by RMSD, buried surface area, hydrogen bonds, distance map, and insertion depth map calculations. Then, free energy perturbation (FEP) method was applied to calculate the binding free energy of each residue by mutating it into Alanine. It was found that the positively charged residues on the tail region of hBD-3 contribute significantly to its binding with membrane. The result emphasized the importance of electrostatic interactions to hBD-3's binding with bacterial membrane.
Collapse
Affiliation(s)
- Ann Brewer
- Chemical Engineering Department, Tennessee Technological University, Cookeville, TN 38505, United States of America
| | - Liqun Zhang
- Chemical Engineering Department, Tennessee Technological University, Cookeville, TN 38505, United States of America.
| |
Collapse
|
7
|
Zhang L. Interaction of Human β Defensin Type 3 (hBD-3) with Different PIP2-Containing Membranes, a Molecular Dynamics Simulation Study. J Chem Inf Model 2021; 61:4670-4686. [PMID: 34473496 DOI: 10.1021/acs.jcim.1c00805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human β defensin type 3 (hBD-3) is a cysteine-rich small antibacterial peptide. It belongs to the human innate immune system. hBD-3 has six cysteine residues, which form three pairs of disulfide bonds, and those bonds break in the reducing condition. It is known that hBD-3 can interact with bacterial membrane, and even eukaryotic cell membrane, which has a low concentration of phosphatidylinositol 4,5-bisphosphate (PIP2) lipids. PIP2 is a vital component in cell membranes and has been found to play important roles during antimicrobial peptide (AMP) interaction with membranes. To understand the functional mechanism of hBD-3 interacting with PIP2-containing membranes, the binding structures of hBD-3 on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers mixed with 10% of PIP2 were predicted using two kinds of methods. The first one is by placing the hBD-3 monomer in different orientations above the POPC + 10%PIP2 membrane to set up five different initial simulation systems and performing long-term simulations on each to predict the most stable binding structure. It was found that hBD-3 analogue binds on the mixed lipid membrane on the two loop regions. The second method is by running long-term simulations on one or nine hBD-3 dimers binding on POPC mixed with 10%PIP2 lipid bilayer starting from the solid-state NMR (ssNMR)-suggested orientation. The dimer dissociated, and the most stable binding of hBD-3 in wild-type on the mixed membrane is also through the two loop regions, which agrees with the prediction from both the first method and the lipid self-assembly result. The PIP2 lipids can form long-lasting hydrogen bonds with positively charged residues such as Arg and Lys on hBD-3, thus forming clusters with hBD-3. As a comparison, hBD-3 dimers binding with a combined bilayer having 1,2-palmitoyl-oleoyl-sn-glycero-3-phosphoserine (POPS) on the upper and POPC on the lower leaflets and the combined POPS + POPC bilayer mixing with 10%PIP2 were also studied. The long-term simulation result shows that hBD-3 can bind with the heads of negatively charged POPS and PIP2 lipids and form hydrogen bonds. The stable binding sites of hBD-3 on PIP2 or POPS mixed bilayers are still on the two loop regions. On the combined POPS + POPC mixed with 10%PIP2 bilayer, the binding of hBD-3 with PIP2 lipids became less stable and fewer because of the competition of binding with the POPS lipids. Besides that, binding with hBD-3 can decrease the membrane thickness of the POPC + PIP2, POPS + POPC, and POPS + POPC + PIP2 bilayers and make POPS and PIP2 lipids more flexible based on the order parameter calculations. Our results supply molecular insight on AMP binding with different membranes and can help understand the functional mechanism of hBD-3 disrupting PIP2-containing membranes.
Collapse
Affiliation(s)
- Liqun Zhang
- Department of Chemical Engineering, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| |
Collapse
|
8
|
Yu W, Ning N, Xue Y, Huang Y, Guo F, Li T, Yang B, Luo D, Sun Y, Li Z, Wang J, He Z, Cheng S, Zhang X, Wang H. A Chimeric Cationic Peptide Composed of Human β-Defensin 3 and Human β-Defensin 4 Exhibits Improved Antibacterial Activity and Salt Resistance. Front Microbiol 2021; 12:663151. [PMID: 34025617 PMCID: PMC8137984 DOI: 10.3389/fmicb.2021.663151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/14/2021] [Indexed: 01/10/2023] Open
Abstract
Human beta-defensins (hBDs) play an important role in the host defense against various microbes, showing different levels of antibacterial activity and salt resistance in vitro. It is of interest to investigate whether can chimeric hBD analogs enhanced antibacterial activity and salt resistance. In this study, we designed a chimeric human defensin, named H4, by combining sequences of human beta-defensin-3 (hBD-3) and human beta-defensin-4 (hBD-4), then evaluated its antibacterial activity, salt resistance, and cytotoxic effects. The result showed that the antibacterial activity of H4 against most tested strains, including Klebsiella pneumonia, Enterococcus faecalis, Staphyloccocus aureus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, and Acinetobacter baumannii was significantly improved compared to that of hBD-3 and hBD-4. Notably, H4 exhibited significantly better antibacterial activity against multidrug resistant isolate A. baumannii MDR-ZJ06 than commonly used antibiotics. Chimeric H4 still showed more than 80% antibacterial activity at high salt concentration (150 μM), which proves its good salt tolerance. The cytotoxic effect assay showed that the toxicity of H4 to Hela, Vero, A549 cells and erythrocytes at a low dose (<10 μg/ml) was similar to that of hBD-3 and hBD-4. In conclusion, given its broad spectrum of antibacterial activity and high salt resistance, chimeric H4 could serve as a promising template for new therapeutic antimicrobial agents.
Collapse
Affiliation(s)
- Wenjing Yu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Nianzhi Ning
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ying Xue
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,College of Life Science, Ludong University, Yantai, China
| | - Yanyu Huang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Feng Guo
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tao Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Boning Yang
- Department of Orthopedics, Henan University People's Hospital, Zhengzhou, China
| | - Deyan Luo
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yakun Sun
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhan Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jianxin Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhili He
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shiwei Cheng
- College of Life Science, Ludong University, Yantai, China
| | - Xingxiao Zhang
- College of Life Science, Ludong University, Yantai, China
| | - Hui Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
9
|
Gao Y, Pramanik A, Patibandla S, Gates K, Hill G, Ignatius A, Ray PC. Development of Human Host Defense Antimicrobial Peptide-Conjugated Biochar Nanocomposites for Combating Broad-Spectrum Superbugs. ACS APPLIED BIO MATERIALS 2020; 3:7696-7705. [PMID: 35019509 DOI: 10.1021/acsabm.0c00880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infectious diseases by multidrug-resistant superbugs, which cannot be cured using commercially available antibiotics, are the biggest threat for our society. Due to the lack of discovery of effective antibiotics in the last two decades, there is an urgent need for the design of new broad-spectrum antisuperbug biomaterials. Herein, we report the development of antisuperbug nanocomposites using human host defense antimicrobial peptide-conjugated biochar. To develop an economically viable technology, biochar, a carbon-rich material from naturally abundant resource, has been used. For combating broad-spectrum superbugs, a nanocomposite has been designed by combining biochar with α-defensin human neutrophil peptide-1 (HNP-1), human β-defensin-1 (hBD-1), and human cathelicidin LL-37 antimicrobial peptide. The designed three-dimensional (3D) nanocomposites with pore size between 200 and 400 nm have been used as channels for water passage and captured superbugs. The reported data demonstrated that antimicrobial nanocomposite can be used for efficient capture and eradication of Gram-negative carbapenem-resistant Enterobacteriaceae (CRE) Escherichia coli (E. coli) and Klebsiella pneumoniae (KPN) superbugs, as well as Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) superbugs. Possible mechanisms for broad-spectrum antisuperbug activities using hydrogel have been discussed.
Collapse
Affiliation(s)
- Ye Gao
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Avijit Pramanik
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Shamily Patibandla
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Kaelin Gates
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Glake Hill
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Andrew Ignatius
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Paresh Chandra Ray
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|