1
|
Smith JH, Luo Q, Millheim SL, Millstone JE. Decoupling Intrinsic Metal Ion Reduction Rates from Structural Outcomes in Multimetallic Nanoparticles. J Am Chem Soc 2024; 146:34822-34832. [PMID: 39654045 DOI: 10.1021/jacs.4c13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Simultaneously controlling both stoichiometry and atom arrangement during the synthesis of multimetallic nanoparticles is often challenging, especially when the desired metal precursors exhibit large differences in their intrinsic reduction kinetics. In such cases, traditional synthetic methods often lead to the formation of exclusively phase-segregated structures. In this study, we demonstrate that the relative reduction kinetics of the metal precursors can be manipulated independently of their intrinsic differences in reduction rates by modulating the instantaneous concentrations of the metal cation precursors. We achieve this control by adjusting the precursor addition rate, which decouples chemical ordering outcomes from differences in precursor reduction kinetics. To guide these experiments, we describe a quantitative model to determine how metal ion reduction rates evolve with variations in the precursor addition rate and thereby predict optimal conditions for the synthesis of multimetallic nanoparticles with precise structural and compositional outcomes. We demonstrate the efficacy of this model experimentally by synthesizing both core@shell and alloyed nanoparticles with stoichiometric control using the same metal ion precursors in two different bimetallic systems (Au-Pd and Au-Pt) as well as in a quinary metal system (Co, Ni, Cu, Pd, and Pt). This approach enables the design of nanoparticle architectures independent of intrinsic differences in metal ion reduction potentials of the constituent metals while maintaining both stoichiometric and structural control.
Collapse
Affiliation(s)
- Jacob H Smith
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Qi Luo
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Shelby L Millheim
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Jill E Millstone
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
2
|
Fernández B, Pi M, de Lara-Castells MP. Superfluid helium droplet-mediated surface-deposition of neutral and charged silver atomic species. Phys Chem Chem Phys 2023. [PMID: 37317779 DOI: 10.1039/d3cp01303k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Experimental and theoretical work has delivered evidence of the helium nanodroplet-mediated synthesis and soft-landing of metal nanoparticles, nanowires, clusters, and single atoms on solid supports. Recent experimental advances have allowed the formation of charged metal clusters into multiply charged helium nanodroplets. The impact of the charge of immersed metal species in helium nanodroplet-mediated surface deposition is proved by considering silver atoms and cations at zero-temperature graphene as the support. By combining high-level ab initio intermolecular interaction theory with a full quantum description of the superfluid helium nanodroplet motion, evidence is presented that the fundamental mechanism of soft-deposition is preserved in spite of the much stronger interaction of charged species with surfaces, with high-density fluctuations in the helium droplet playing an essential role in braking them. Corroboration is also presented that the soft-landing becomes favored as the helium nanodroplet size increases.
Collapse
Affiliation(s)
- Berta Fernández
- Department of Physical Chemistry, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Martí Pi
- Departament FQA, Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | | |
Collapse
|
3
|
Ernst WE, Lasserus M, Knez D, Hofer F, Hauser AW. Mixed-metal nanoparticles: phase transitions and diffusion in Au-VO clusters. Faraday Discuss 2023; 242:160-173. [PMID: 36178317 PMCID: PMC9890498 DOI: 10.1039/d2fd00089j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nanoparticles with diameters in the range of a few nanometers, consisting of gold and vanadium oxide, are synthesized by sequential doping of cold helium droplets in a molecular beam apparatus and deposited on solid carbon substrates. After surface deposition, the samples are removed and various measurement techniques are applied to characterize the created particles: scanning transmission electron microscopy (STEM) at atomic resolution, temperature dependent STEM and TEM up to 650 °C, energy-dispersive X-ray spectroscopy (EDXS) and electron energy loss spectroscopy (EELS). In previous experiments we have shown that pure V2O5 nanoparticles can be generated by sublimation from the bulk and deposited without affecting their original stoichiometry. Interestingly, our follow-up attempts to create Au@V2O5 core@shell particles do not yield the expected encapsulated structure. Instead, Janus particles of Au and V2O5 with diameters between 10 and 20 nm are identified after deposition. At the interface of the Au and the V2O5 parts we observe an epitaxial-like growth of the vanadium oxide next to the Au structure. To test the temperature stability of these Janus-type particles, the samples are heated in situ during the STEM measurements from room temperature up to 650 °C, where a reduction from V2O5 to V2O3 is followed by a restructuring of the gold atoms to form a Wulff-shaped cluster layer. The temperature dependent dynamic interplay between gold and vanadium oxide in structures of only a few nanometer size is the central topic of this contribution to the Faraday Discussion.
Collapse
Affiliation(s)
- Wolfgang E. Ernst
- Institute of Experimental Physics, Graz University of TechnologyGrazAustria
| | | | - Daniel Knez
- Institute for Electron Microscopy and Nanoanalysis, Graz University of TechnologyGrazAustria
| | - Ferdinand Hofer
- Institute for Electron Microscopy and Nanoanalysis, Graz University of TechnologyGrazAustria
| | - Andreas W. Hauser
- Institute of Experimental Physics, Graz University of TechnologyGrazAustria
| |
Collapse
|
4
|
de Lara-Castells MP. First-principles modelling of the new generation of subnanometric metal clusters: Recent case studies. J Colloid Interface Sci 2022; 612:737-759. [PMID: 35033919 DOI: 10.1016/j.jcis.2021.12.186] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
The very recent development of highly selective techniques making possible the synthesis and experimental characterization of subnanometric (subnanometer-sized) metal clusters (even single atoms) is pushing our understanding far beyond the present knowledge in materials science, driving these clusters as a new generation of quantum materials at the lower bounds of nanotechnology. When the size of the metal cluster is reduced to a small number of atoms, the d-band of the metal splits into a subnanometric d-type molecular orbitals network in which all metal atoms are inter-connected, with the inter-connections having the length of a chemical bond (1-2 Å). These molecular characteristics are at the very core of the high stability and novel properties of the smallest metal clusters, with their integration into colloidal materials interacting with the environment having the potential to further boost their performance in applications such as luminescence, sensing, bioimaging, theranostics, energy conversion, catalysis, and photocatalysis. Through the presentation of very recent case studies, this Feature Article is aimed to illustrate how first-principles modelling, including methods beyond the state-of-the-art and an interplay with cutting-edge experiments, is helping to understand the special properties of these clusters at the most fundamental level. Moreover, it will be discussed how superfluid helium droplets can act both as nano-reactors and carriers to achieve the synthesis and surface deposition of metal clusters. This concept will be illustrated with the quantum simulation of the helium droplet-assisted soft-landing of a single Au atom onto a titanium dioxide (TiO2) surface. Next, it will be shown how the application of first-principles methods have disclosed the fundamental reasons why subnanometric Cu5 clusters are resistant to irreversible oxidation, and capable of increasing and extending into the visible region the solar absorption of TiO2, of augmenting its efficiency for photo-catalysis beyond a factor of four, also considering the decomposition and photo-activation of CO2 as a prototypical (photo-) catalytic reaction. Finally, I will discuss how the modification of the same material with subnanometric Ag5 clusters has converted it into a "reporter" of a surface polaron property as well as a novel two-dimensional polaronic material.
Collapse
|
5
|
Blancafort-Jorquera M, González M. Vibrational energy relaxation of a diatomic molecule in a superfluid helium nanodroplet: influence of the nanodroplet size, interaction energy and energy gap. Phys Chem Chem Phys 2021; 23:25961-25973. [PMID: 34783338 DOI: 10.1039/d1cp03629g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of the nanodroplet size, molecule-helium interaction potential energy and ν = 1 - ν = 0 vibrational energy gap on the vibrational energy relaxation (VER) of a diatomic molecule (X2) in a superfluid helium nanodroplet [HeND or (4He)N; finite quantum solvent at T = 0.37 K] has been studied using a hybrid quantum approach recently proposed by us and taking as a reference the VER results on the I2@(4He)100 doped nanodroplet (Vilà et al., Phys. Chem. Chem. Phys., 2018, 20, 118, which corresponds to the first theoretical study on the VER of molecules embedded in a HeND). This has allowed us to obtain a deeper insight into the vibrational relaxation dynamics. The nanodroplet size has a very small effect on the VER, as this process mainly depends on the interaction between the molecule and the nanodroplet first solvation shell. Regarding the interaction potential energy and the energy gap, both factors play an important and comparable role in the VER time properties (global relaxation time, lifetime and transition time). As the former becomes stronger the relaxation time properties decrease in a significant way (their inverse follows a linear dependence with respect to the ν = 1 - ν = 0 coupling term) and they also decrease in a significant manner when the energy gap diminishes (linear dependence on the ν = 1 - ν = 0 energy difference). We expect that this study will motivate further work on the vibrational relaxation process in HeNDs.
Collapse
Affiliation(s)
- Miquel Blancafort-Jorquera
- Departament de Ciència dels Materials i Química Física and IQTC, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.
| | - Miguel González
- Departament de Ciència dels Materials i Química Física and IQTC, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
6
|
Hudry D, De Backer A, Popescu R, Busko D, Howard IA, Bals S, Zhang Y, Pedrazo-Tardajos A, Van Aert S, Gerthsen D, Altantzis T, Richards BS. Interface Pattern Engineering in Core-Shell Upconverting Nanocrystals: Shedding Light on Critical Parameters and Consequences for the Photoluminescence Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104441. [PMID: 34697908 DOI: 10.1002/smll.202104441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Advances in controlling energy migration pathways in core-shell lanthanide (Ln)-based hetero-nanocrystals (HNCs) have relied heavily on assumptions about how optically active centers are distributed within individual HNCs. In this article, it is demonstrated that different types of interface patterns can be formed depending on shell growth conditions. Such interface patterns are not only identified but also characterized with spatial resolution ranging from the nanometer- to the atomic-scale. In the most favorable cases, atomic-scale resolved maps of individual particles are obtained. It is also demonstrated that, for the same type of core-shell architecture, the interface pattern can be engineered with thicknesses of just 1 nm up to several tens of nanometers. Total alloying between the core and shell domains is also possible when using ultra-small particles as seeds. Finally, with different types of interface patterns (same architecture and chemical composition of the core and shell domains) it is possible to modify the output color (yellow, red, and green-yellow) or change (improvement or degradation) the absolute upconversion quantum yield. The results presented in this article introduce an important paradigm shift and pave the way toward the emergence of a new generation of core-shell Ln-based HNCs with better control over their atomic-scale organization.
Collapse
Affiliation(s)
- Damien Hudry
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Annick De Backer
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Radian Popescu
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, Engesserstrasse 7, 76131, Karlsruhe, Germany
| | - Dmitry Busko
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ian A Howard
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Yang Zhang
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Adrian Pedrazo-Tardajos
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Sandra Van Aert
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Dagmar Gerthsen
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, Engesserstrasse 7, 76131, Karlsruhe, Germany
| | - Thomas Altantzis
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Bryce S Richards
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
| |
Collapse
|
7
|
Nelli D, Pietrucci F, Ferrando R. Impurity diffusion in magic-size icosahedral clusters. J Chem Phys 2021; 155:144304. [PMID: 34654289 DOI: 10.1063/5.0060236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Atomic diffusion is at the basis of chemical ordering transformations in nanoalloys. Understanding the diffusion mechanisms at the atomic level is therefore a key issue in the study of the thermodynamic behavior of these systems and, in particular, of their evolution from out-of-equilibrium chemical ordering types often obtained in the experiments. Here, the diffusion is studied in the case of a single-atom impurity of Ag or Au moving within otherwise pure magic-size icosahedral clusters of Cu or Co by means of two different computational techniques, i.e., molecular dynamics and metadynamics. Our simulations reveal unexpected diffusion pathways, in which the displacement of the impurity is coupled with the creation of vacancies in the central part of the cluster. We show that the observed mechanism is quite different from the vacancy-mediated diffusion processes identified so far, and we demonstrate that it can be related to the presence of non-homogeneous compressive stress in the inner part of the icosahedral structure.
Collapse
Affiliation(s)
- Diana Nelli
- Dipartimento di Fisica dell'Università di Genova, via Dodecaneso 33, Genova 16146, Italy
| | - Fabio Pietrucci
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IMPMC, 75005 Paris, France
| | - Riccardo Ferrando
- Dipartimento di Fisica dell'Università di Genova and CNR-IMEM, via Dodecaneso 33, Genova 16146, Italy
| |
Collapse
|
8
|
Molecular dynamics study on structural and atomic evolution between Au and Ni nanoparticles through coalescence. Sci Rep 2021; 11:15432. [PMID: 34326385 PMCID: PMC8322430 DOI: 10.1038/s41598-021-94822-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/06/2021] [Indexed: 11/22/2022] Open
Abstract
Motivated by the structure evolution experiments of Janus NiAu nanoparticles (NPs), we present a detailed study on the thermodynamic evolution of Ni and Au NPs with different ratios of Au and Ni through the molecular dynamics (MD) simulations. It is found that, for fixed Ni particle size (5.8 nm in diameter), the energy variation with the increasing temperature is related to the Au sizes (1.5–9.6 nm in diameter), due to the diverse atomic segregation modes. For a small Au particle, due to lattice induction, the structure will change from order to disorder and then to order. The interface defects of the merging NPs could be automatically eliminated by coalescence processes. The change in energy as the temperature increases is similar to that of monometallic NPs. For larger Au particles, the irregular variation of energy occurs and the atomic energy experience one or two reductions at least with the increase of the temperature. The segregation of Au atoms to the surface of Ni particle is dominant during the continuous heating process. The coalescence processes of Au atoms strongly determine the final morphology of the particles. Dumbbell-like, Janus and eccentric core–shell spherical structures could be obtained during the heating process. Our results will provide an effective approach to the design of novel materials with specific properties through thermal control.
Collapse
|
9
|
López-Caballero P, Garsed R, de Lara-Castells MP. Computational Characterization of the Intermixing of Iron Triade (Fe, Co, and Ni) Surfaces and Sub-nanometric Clusters with Atomic Gold. ACS OMEGA 2021; 6:16165-16175. [PMID: 34179662 PMCID: PMC8223428 DOI: 10.1021/acsomega.1c02116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/24/2021] [Indexed: 05/05/2023]
Abstract
Dispersion-corrected density functional theory (DFT-D3) is applied to model iron triade (Fe, Co, and Ni) surfaces upon exchange of surface atoms with atomic gold. One first goal is to analyze the contact problem at the triade surface-Au interface and to correlate our findings with recent observations on iron triade nanoparticles (with diameters of around 5 nm) passivated by a few layers of gold. For this purpose, we analyze: (1) the energies of substitution; (2) the restructuring of the iron triade surfaces upon the atomic exchange; (3) the density of the orbitals bearing the largest projection on d(Au) atomic orbitals and, particularly, their overlap with orbitals from neighboring atoms of the triade surfaces; (4) the modification of the electronic density of states; and (5) the redistribution of the electronic density upon intermixing of Au and triade atoms. Inspite of the similarities between Ni, Co, and Fe in the condensed phase, significant differences are found in the features characterizing the exchange process. In particular, we find a better integration of the Au atom on the substitutional site of the Ni(001) surface than on those of the Fe(001) and Co(001) surfaces. This is in agreement with the fact that the electronic density of states is almost indistinguishable before and after Ni-Au intermixing. This outcome is correlated with the experimental observation on the allowing transition of Ni-Au core-shell nanoparticles before reaching the melting temperature. Our second objective is to explore the Au-triade atom intermixing process in sub-nanometric clusters, finding that it is energetically more favored than at solid surfaces yet endothermic at 0 K. This feature is explained as the result of the structural fluxionality characterizing clusters at the sub-nanometer scale. Entropy contributions make mixed Au-Ni clusters more stable than the unmixed counterpart already at 650 K while unmixed Co clusters remain energetically more favored up to 1295 K and iron clusters are predicted to be stable against intermixing over the experimentally relevant range of temperatures (up to 1100 °C). Remarkably, the net charge donated from the three triade atoms to atomic gold upon intermixing is similar in triade sub-nanometeric clusters and at extended triade surfaces. Gold clusters are prone to host Fe, Co, and Ni atoms at the center of their structures and the exchange process is predicted to be exothermic at 0 K even for a small cluster made of 13 atoms. More generally, our work highlights the importance of the polarity of the chemical bond between unlike metal atoms in alloys.
Collapse
|
10
|
Ernst WE, Hauser AW. Metal clusters synthesized in helium droplets: structure and dynamics from experiment and theory. Phys Chem Chem Phys 2020; 23:7553-7574. [PMID: 33057510 DOI: 10.1039/d0cp04349d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metal clusters have drawn continuous interest because of their high potential for the assembly of matter with special properties that may significantly differ from the corresponding bulk. Controlled combination of particular elements in one nanoparticle can increase the options for the creation of new materials for photonic, catalytic, or electronic applications. Superfluid helium droplets provide confinement and ultralow temperature, i.e. an ideal environment for the atom-by-atom aggregation of a new nanoparticle. This perspective presents a review of the current research progress on the synthesis of tailored metal and metal oxide clusters including core-shell designs, their characterization within the helium droplet beam, deposition on various solid substrates, and analysis via surface diagnostics. Special attention is given to the thermal properties of mixed metal clusters and questions about alloy formation on the nanoscale. Experimental results are accompanied by theoretical approaches employing computational chemistry, molecular dynamics simulations and He density functional theory.
Collapse
Affiliation(s)
- Wolfgang E Ernst
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria.
| | | |
Collapse
|