1
|
Yang W, Yan S, Xu Z, Chen C, Wang J, Yan X, Chang S, Wang C, Wu T. Multi-Cavity Nanorefractive Index Sensor Based on MIM Waveguide. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1719. [PMID: 39513799 PMCID: PMC11547371 DOI: 10.3390/nano14211719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
Within this manuscript, we provide a novel Fano resonance-driven micro-nanosensor. Its primary structural components are a metal-insulator-metal (MIM) waveguide, a shield with three disks, and a T-shaped cavity (STDTC). The finite element approach was used to study the gadget in theory. It is found that the adjustment of the structure and the change of the dimensions are closely related to the sensitivity (S) and the quality factor (FOM). Different model structural parameters affect the Fano resonance, which in turn changes the transmission characteristics of the resonator. Through in-depth experimental analysis and selection of appropriate parameters, the sensor sensitivity finally reaches 3020 nm/RIU and the quality factor reaches 51.89. Furthermore, the installation of this microrefractive index sensor allows for the quick and sensitive measurement of glucose levels. It is a positive contribution to the field of optical devices and micro-nano sensors and meets the demand for efficient detection when applied in medical and environmental scenarios.
Collapse
Affiliation(s)
- Weijie Yang
- School of Electrical and Control Engineering, North University of China, Taiyuan 030051, China; (W.Y.); (C.C.); (J.W.); (S.C.)
- School of Electrical Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China; (X.Y.); (C.W.); (T.W.)
- Zhejiang-Belarus Joint Laboratory of Intelligent Equipment and System for Water Conservancy and Hydropower Safety Monitoring, Hangzhou 310018, China
| | - Shubin Yan
- School of Electrical Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China; (X.Y.); (C.W.); (T.W.)
- Zhejiang-Belarus Joint Laboratory of Intelligent Equipment and System for Water Conservancy and Hydropower Safety Monitoring, Hangzhou 310018, China
| | - Ziheng Xu
- School of Automation and Electrical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Changxin Chen
- School of Electrical and Control Engineering, North University of China, Taiyuan 030051, China; (W.Y.); (C.C.); (J.W.); (S.C.)
| | - Jin Wang
- School of Electrical and Control Engineering, North University of China, Taiyuan 030051, China; (W.Y.); (C.C.); (J.W.); (S.C.)
- School of Electrical Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China; (X.Y.); (C.W.); (T.W.)
- Zhejiang-Belarus Joint Laboratory of Intelligent Equipment and System for Water Conservancy and Hydropower Safety Monitoring, Hangzhou 310018, China
| | - Xiaoran Yan
- School of Electrical Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China; (X.Y.); (C.W.); (T.W.)
| | - Shuwen Chang
- School of Electrical and Control Engineering, North University of China, Taiyuan 030051, China; (W.Y.); (C.C.); (J.W.); (S.C.)
- School of Electrical Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China; (X.Y.); (C.W.); (T.W.)
- Zhejiang-Belarus Joint Laboratory of Intelligent Equipment and System for Water Conservancy and Hydropower Safety Monitoring, Hangzhou 310018, China
| | - Chong Wang
- School of Electrical Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China; (X.Y.); (C.W.); (T.W.)
| | - Taiquan Wu
- School of Electrical Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China; (X.Y.); (C.W.); (T.W.)
| |
Collapse
|
2
|
Vernier C, Saviot L, Fan Y, Courty A, Portalès H. Sensitivity of Localized Surface Plasmon Resonance and Acoustic Vibrations to Edge Rounding in Silver Nanocubes. ACS NANO 2023; 17:20462-20472. [PMID: 37812521 DOI: 10.1021/acsnano.3c06990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Precise knowledge of the dependence of nano-object properties on their structural characteristics such as their size, shape, composition, or crystallinity, in turn, enables them to be finely characterized using appropriate techniques. Spectrophotometry and inelastic light scattering spectroscopy are noninvasive techniques that are proving highly robust and efficient for characterizing the optical response and vibrational properties of metal nano-objects. Here, we investigate the optical and vibrational properties of monodomain silver nanocubes synthesized by the chemical route, with edge length ranging from around 20 to 58 nm. The synthesized nanocrystals are not perfectly cubic and exhibit rounded edges and corners. This rounding was quantitatively taken into account by assimilating the shape of the nanocubes to superellipsoids. The effect of rounding on their optical response was clearly evidenced by localized surface plasmon resonance spectroscopy and supported by calculations based on the discrete dipole approximation method. The study of their acoustic vibrations by high-resolution low-frequency Raman scattering revealed a substructure of the T2g band, which was analyzed as a function of rounding. The measured frequencies are consistent with the existence of an anticrossing pattern of the two T2g branches. Such an avoided crossing in the T2g modes is clearly evidenced by calculating the vibrational frequencies of silver nanocubes using the Rayleigh-Ritz variational method that accounts for both their real size, shape, and cubic elasticity. These results show that it is possible to assess the rounding of nanocubes, including by means of ensemble spectroscopic measurements on well-calibrated particles.
Collapse
Affiliation(s)
- Charles Vernier
- Sorbonne Université, CNRS, MONARIS, UMR 8233, Paris 75005, France
| | - Lucien Saviot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université Bourgogne Franche-Comté, Dijon CEDEX 21078, France
| | - Yinan Fan
- Sorbonne Université, CNRS, MONARIS, UMR 8233, Paris 75005, France
| | - Alexa Courty
- Sorbonne Université, CNRS, MONARIS, UMR 8233, Paris 75005, France
| | - Hervé Portalès
- Sorbonne Université, CNRS, MONARIS, UMR 8233, Paris 75005, France
| |
Collapse
|
3
|
Jansen M, Tisdale WA, Wood V. Nanocrystal phononics. NATURE MATERIALS 2023; 22:161-169. [PMID: 36702886 DOI: 10.1038/s41563-022-01438-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/14/2022] [Indexed: 06/18/2023]
Abstract
Colloidal nanocrystals are successfully used as nanoscale building blocks for creating hierarchical solids with structures that range from amorphous networks to sophisticated periodic superlattices. Recently, it has been observed that these superlattices exhibit collective vibrations, which stem from the correlated motion of the nanocrystals, with their surface-bound ligands acting as molecular linkers. In this Perspective, we describe the work so far on collective vibrations in nanocrystal solids and their as-of-yet untapped potential for phononic applications. With the ability to engineer vibrations in the hypersonic regime through the choice of nanocrystal and linker composition, as well as by controlling their size, shape and chemical interactions, such superstructures offer new opportunities for phononic crystals, acoustic metamaterials and optomechanical systems.
Collapse
Affiliation(s)
- Maximilian Jansen
- Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - William A Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vanessa Wood
- Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Xin W, Huang J, Chen Q, Sun Y, Chen H, Liu X. Study of Nanoparticle-Polymer Interactions via the Mechanical Stretching of Surface-Enhanced Raman Scattering Substrates. Macromol Rapid Commun 2023; 44:e2200541. [PMID: 36057795 DOI: 10.1002/marc.202200541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/04/2022] [Indexed: 01/26/2023]
Abstract
It is shown that the aligned electrospun fibers are a convenient platform for studying the mechanical effects on nanomaterials, particularly when using surface-enhanced Raman scattering as a sensitive tool of monitoring. The ligands on the surface of the embedded Au nanoparticles fall off easily with the shear force from the stretching, in contrast to the counterparts protected by polymer/silica shells. Upon stretching, the chains of Au nanoparticles will reversibly break, as revealed by the dramatic changes in the longitudinal plasmon absorption. It is believed that such a platform will open a window for understanding mechanical effects at the nanoscale, and also a new means for synthetic control.
Collapse
Affiliation(s)
- Wenwen Xin
- Institute of Advanced Synthesis and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, Jiangsu, 211816, P. R. China
| | - Jie Huang
- Institute of Advanced Synthesis and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, Jiangsu, 211816, P. R. China
| | - Qiuxian Chen
- Institute of Advanced Synthesis and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, Jiangsu, 211816, P. R. China
| | - Yiwei Sun
- Institute of Advanced Synthesis and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, Jiangsu, 211816, P. R. China
| | - Hongyu Chen
- School of Science, Westlake University, Hangzhou, 310023, P. R. China
| | - Xueyang Liu
- Institute of Advanced Synthesis and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, Jiangsu, 211816, P. R. China
| |
Collapse
|
5
|
Vasileiadis T, Noual A, Wang Y, Graczykowski B, Djafari-Rouhani B, Yang S, Fytas G. Optomechanical Hot-Spots in Metallic Nanorod-Polymer Nanocomposites. ACS NANO 2022; 16:20419-20429. [PMID: 36475620 PMCID: PMC9798866 DOI: 10.1021/acsnano.2c06673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Plasmonic coupling between adjacent metallic nanoparticles can be exploited for acousto-plasmonics, single-molecule sensing, and photochemistry. Light absorption or electron probes can be used to study plasmons and their interactions, but their use is challenging for disordered systems and colloids dispersed in insulating matrices. Here, we investigate the effect of plasmonic coupling on optomechanics with Brillouin light spectroscopy (BLS) in a prototypical metal-polymer nanocomposite, gold nanorods (Au NRs) in polyvinyl alcohol. The intensity of the light inelastically scattered on thermal phonons captured by BLS is strongly affected by the wavelength of the probing light. When light is resonant with the transverse plasmons, BLS reveals mostly the normal vibrational modes of single NRs. For lower energy off-resonant light, BLS is dominated by coupled bending modes of NR dimers. The experimental results, supported by optomechanical calculations, document plasmonically enhanced BLS and reveal energy-dependent confinement of coupled plasmons close to the tips of NR dimers, generating BLS hot-spots. Our work establishes BLS as an optomechanical probe of plasmons and promotes nanorod-soft matter nanocomposites for acousto-plasmonic applications.
Collapse
Affiliation(s)
| | - Adnane Noual
- LPMR,
Département de Physique, Faculté des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
| | - Yuchen Wang
- Department
of Materials Science and Engineering, University
of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Bartlomiej Graczykowski
- Faculty
of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Bahram Djafari-Rouhani
- Département
de Physique, Institut d’Electronique de Microélectonique
et de Nanotechnologie, UMR CNRS 8520, Université
de Lille, Villeneuve
d’Ascq, 59655, France
| | - Shu Yang
- Department
of Materials Science and Engineering, University
of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - George Fytas
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
6
|
Wang Z, Kim H, Secchi M, Montagna M, Furst EM, Djafari-Rouhani B, Fytas G. Quantization of Acoustic Modes in Dumbbell Nanoparticles. PHYSICAL REVIEW LETTERS 2022; 128:048003. [PMID: 35148122 DOI: 10.1103/physrevlett.128.048003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The vibrational eigenmodes of dumbbell-shaped polystyrene nanoparticles are recorded by Brillouin light spectroscopy (BLS), and the full experimental spectra are calculated theoretically. Different from spheres with a degeneracy of (2l+1), with l being the angular momentum quantum number, the eigenmodes of dumbbells are either singly or doubly degenerate owing to their axial symmetry. The BLS spectrum reveals a new, low-frequency peak, which is attributed to the out-of-phase vibration of the two lobes of the dumbbell. The quantization of acoustic modes in these molecule-shaped dumbbell particles evolves from the primary colloidal spheres as the separation between the two lobes increases.
Collapse
Affiliation(s)
- Zuyuan Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Institute for Measurement and Automation, Division of Sensor Technology and Measurement Systems, Bundeswehr University Munich, Werner Heisenberg Weg 39, 85579 Neubiberg, Germany
| | - Hojin Kim
- Department of Chemical & Biomolecular Engineering, Allan P. Colburn Laboratory, University of Delaware, Newark, Delaware 19716, USA
| | - Maria Secchi
- Department of Industrial Engineering, University of Trento, via Sommarive 9, I-38123 Trento, Italy
| | - Maurizio Montagna
- Dipartimento di Fisica, Universitá di Trento, via Sommarive 14, I-38123 Trento, Italy
| | - Eric M Furst
- Department of Chemical & Biomolecular Engineering, Allan P. Colburn Laboratory, University of Delaware, Newark, Delaware 19716, USA
| | - Bahram Djafari-Rouhani
- Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN), UMRCNRS 8520, Department of Physics, University of Lille, Villeneuve d'Ascq 59655, France
| | - George Fytas
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| |
Collapse
|
7
|
Wang J, Kang E, Sultan U, Merle B, Inayat A, Graczykowski B, Fytas G, Vogel N. Influence of Surfactant-Mediated Interparticle Contacts on the Mechanical Stability of Supraparticles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:23445-23456. [PMID: 34737841 PMCID: PMC8558861 DOI: 10.1021/acs.jpcc.1c06839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/15/2021] [Indexed: 05/14/2023]
Abstract
Colloidal supraparticles are micron-scale spherical assemblies of uniform primary particles, which exhibit emergent properties of a colloidal crystal, yet exist as a dispersible powder. A prerequisite to utilize these emergent functionalities is that the supraparticles maintain their mechanical integrity upon the mechanical impacts that are likely to occur during processing. Understanding how the internal structure relates to the resultant mechanical properties of a supraparticle is therefore of general interest. Here, we take the example of supraparticles templated from water/fluorinated oil emulsions in droplet-based microfluidics and explore the effect of surfactants on their mechanical properties. Stable emulsions can be generated by nonionic block copolymers consisting of a hydrophilic and fluorophilic block and anionic fluorosurfactants widely available under the brand name Krytox. The supraparticles formed in the presence of both types of surfactants appear structurally similar, but differ greatly in their mechanical properties. While the nonionic surfactant induces superior mechanical stability and ductile fracture behavior, the anionic Krytox surfactant leads to weak supraparticles with brittle fracture. We complement this macroscopic picture with Brillouin light spectroscopy that is very sensitive to the interparticle contacts for subnanometer-thick adsorbed layers atop of the nanoparticle. While the anionic Krytox does not significantly affect the interparticle bonds, the amphiphilic nonionic surfactant drastically strengthens these bonds to the point that individual particle vibrations are not resolved in the experimental spectrum. Our results demonstrate that seemingly subtle changes in the physicochemical properties of supraparticles can drastically impact the resultant mechanical properties.
Collapse
Affiliation(s)
- Junwei Wang
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Eunsoo Kang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Umair Sultan
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
- Institute
of Chemical Reaction Engineering, Friedrich-Alexander
University Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Benoit Merle
- Materials
Science and Engineering I and Interdisciplinary Center for Nanostructured
Films (IZNF), Friedrich-Alexander University
Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alexandra Inayat
- Institute
of Chemical Reaction Engineering, Friedrich-Alexander
University Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Bartlomiej Graczykowski
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Faculty
of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, Poznan 61-614, Poland
| | - George Fytas
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- E-mail:
| | - Nicolas Vogel
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
- E-mail:
| |
Collapse
|
8
|
Spyridakou M, Maji T, Gkikas M, Ngai KL, Floudas G. Sub-Rouse Dynamics in Poly(isobutylene) as a Function of Molar Mass. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Tanmoy Maji
- Department of Chemistry, University of Massachusetts Lowell, Cambridge, Massachusetts, Lowell Massachusetts 01854, United States
| | - Manos Gkikas
- Department of Chemistry, University of Massachusetts Lowell, Cambridge, Massachusetts, Lowell Massachusetts 01854, United States
| | - Kia L. Ngai
- CNR-IPCF, Università di Pisa, Largo Bruno Pontecorvo 3, Pisa I-56127, Italy
| | - George Floudas
- Department of Physics, University of Ioannina, Ioannina 45110, Greece
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), Ioannina 45110, Greece
| |
Collapse
|