1
|
Longo V, De Pasquale L, Tavella F, Barawi M, Gomez-Mendoza M, de la Peña O'Shea V, Ampelli C, Perathoner S, Centi G, Genovese C. High photocatalytic yield in the non-oxidative coupling of methane using a Pd-TiO 2 nanomembrane gas flow-through reactor. EES CATALYSIS 2024; 2:1164-1175. [PMID: 39246680 PMCID: PMC11375953 DOI: 10.1039/d4ey00112e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 09/10/2024]
Abstract
The photocatalytic non-oxidative coupling of methane (NOCM) is a highly challenging and sustainable reaction to produce H2 and C2+ hydrocarbons under ambient conditions using sunlight. However, there is a lack of knowledge, particularly on how to achieve high photocatalytic yield in continuous-flow reactors. To address this, we have developed a novel flow-through photocatalytic reactor for NOCM as an alternative to the conventionally used batch reactors. Me/TiO2 photocatalysts, where Me = Au, Ag and Pd, are developed, but only those based on Pd are active. Interestingly, the preparation method significantly impacts performance, going from inactive samples (prepared by wet impregnation) to highly active samples (prepared by strong electrostatic adsorption - SEA). These photocatalysts are deposited on a nanomembrane, and the loading effect, which determines productivity, selectivity, and stability, is also analysed. Transient absorption spectroscopy (TAS) analysis reveals the involvement of holes and photoelectrons after charge separation on Pd/TiO2 (SEA) and their interaction with methane in ethane formation, reaching a production rate of about 1000 μmol g-1 h-1 and a selectivity of almost 95% after 5 hours of reaction. Stability tests involving 24 h of continuous irradiation are performed, showing changes in productivity and selectivity to ethane, ethylene and CO2. The effect of a mild oxidative treatment (80 °C) to extend the catalyst's lifetime is also reported.
Collapse
Affiliation(s)
- Victor Longo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences and CASPE (INSTM), University of Messina, Viale F. Stagno D'Alcontres 31 98166 Messina Italy
| | - Luana De Pasquale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences and CASPE (INSTM), University of Messina, Viale F. Stagno D'Alcontres 31 98166 Messina Italy
| | - Francesco Tavella
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences and CASPE (INSTM), University of Messina, Viale F. Stagno D'Alcontres 31 98166 Messina Italy
| | - Mariam Barawi
- Photoactivated Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra, 3 Móstoles 28935 Madrid Spain
| | - Miguel Gomez-Mendoza
- Photoactivated Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra, 3 Móstoles 28935 Madrid Spain
| | - Víctor de la Peña O'Shea
- Photoactivated Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra, 3 Móstoles 28935 Madrid Spain
| | - Claudio Ampelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences and CASPE (INSTM), University of Messina, Viale F. Stagno D'Alcontres 31 98166 Messina Italy
| | - Siglinda Perathoner
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences and CASPE (INSTM), University of Messina, Viale F. Stagno D'Alcontres 31 98166 Messina Italy
| | - Gabriele Centi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences and CASPE (INSTM), University of Messina, Viale F. Stagno D'Alcontres 31 98166 Messina Italy
| | - Chiara Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences and CASPE (INSTM), University of Messina, Viale F. Stagno D'Alcontres 31 98166 Messina Italy
| |
Collapse
|
2
|
Michiels R, Gerrits N, Neyts E, Bogaerts A. Plasma Catalysis Modeling: How Ideal Is Atomic Hydrogen for Eley-Rideal? THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:11196-11209. [PMID: 39015417 PMCID: PMC11247482 DOI: 10.1021/acs.jpcc.4c02193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Plasma catalysis is an emerging technology, but a lot of questions about the underlying surface mechanisms remain unanswered. One of these questions is how important Eley-Rideal (ER) reactions are, next to Langmuir-Hinshelwood reactions. Most plasma catalysis kinetic models predict ER reactions to be important and sometimes even vital for the surface chemistry. In this work, we take a critical look at how ER reactions involving H radicals are incorporated in kinetic models describing CO2 hydrogenation and NH3 synthesis. To this end, we construct potential energy surface (PES) intersections, similar to elbow plots constructed for dissociative chemisorption. The results of the PES intersections are in agreement with ab initio molecular dynamics (AIMD) findings in literature while being computationally much cheaper. We find that, for the reactions studied here, adsorption is more probable than a reaction via the hot atom (HA) mechanism, which in turn is more probable than a reaction via the ER mechanism. We also conclude that kinetic models of plasma-catalytic systems tend to overestimate the importance of ER reactions. Furthermore, as opposed to what is often assumed in kinetic models, the choice of catalyst will influence the ER reaction probability. Overall, the description of ER reactions is too much "ideal" in models. Based on our findings, we make a number of recommendations on how to incorporate ER reactions in kinetic models to avoid overestimation of their importance.
Collapse
Affiliation(s)
- Roel Michiels
- Research
group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk,Antwerp BE-2610, Belgium
| | - Nick Gerrits
- Research
group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk,Antwerp BE-2610, Belgium
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| | - Erik Neyts
- Research
group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk,Antwerp BE-2610, Belgium
| | - Annemie Bogaerts
- Research
group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk,Antwerp BE-2610, Belgium
| |
Collapse
|
3
|
M Nguyen H, Omidkar A, Song H. Technical Challenges and Prospects in Sustainable Plasma Catalytic Ammonia Production from Methane and Nitrogen. Chempluschem 2023:e202300129. [PMID: 37160701 DOI: 10.1002/cplu.202300129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/19/2023] [Indexed: 05/11/2023]
Abstract
Ammonia is crucial for human life as an important ingredient for fertilizer, industrial and household chemicals, and is considered as a future fuel alternative and hydrogen storage molecule. There remain no viable alternatives to the energy-and capital-intensive Haber-Bosch (H-B) process. Efforts in the development of novel catalytic processes operated at milder conditions (low temperatures and ambient pressure), prominently electrochemistry and non-thermal plasma (NTP), and utilization of lower-cost H sources for ammonia formation than the ultrapure H2 have been witnessed in the last few years. Yet, limited progress from these routes has been made to date given unresolved low ammonia yield and technical challenges. Several rare works attempted to activate methane (CH4 ) and nitrogen (N2 ) by non-thermal plasma to produce ammonia and valued-added hydrocarbons have proven to be a promising research direction, rivalling the reaction between N2 and ultrapure H2 or water. The direct conversion of CH4 and N2 to ammonia is still at the beginning level, and it remains unclear that what extent these technologies must be improved to develop a commercial process. Toward this goal, this Perspective critiques current steps and miss-steps of sustainable plasma catalytic ammonia production from CH4 and N2 in terms of technology, plasma-catalyst synergy, mechanistic insights, and experimental protocols. We discuss mechanistic understandings of catalyst-promoted ammonia production and translate such discussions as well as key metrics achieved in the field into recommendations of feasible processes for ammonia and value-added hydrocarbons formation from CH4 and N2 .
Collapse
Affiliation(s)
- Hoang M Nguyen
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. N. W., Calgary, AB T2N 1N4, Canada
| | - Ali Omidkar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. N. W., Calgary, AB T2N 1N4, Canada
| | - Hua Song
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. N. W., Calgary, AB T2N 1N4, Canada
| |
Collapse
|