1
|
Su Q, Jiang C, Gou D, Long Y. Surface Plasmon-Assisted Fluorescence Enhancing and Quenching: From Theory to Application. ACS APPLIED BIO MATERIALS 2021; 4:4684-4705. [PMID: 35007020 DOI: 10.1021/acsabm.1c00320] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The integration of surface plasmon resonance and fluorescence yields a multiaspect improvement in surface fluorescence sensing and imaging, leading to a paradigm shift of surface plasmon-assisted fluorescence techniques, for example, surface plasmon enhanced field fluorescence spectroscopy, surface plasmon coupled emission (SPCE), and SPCE imaging. This Review aims to characterize the unique optical property with a common physical interpretation and diverse surface architecture-based measurements. The fundamental electromagnetic theory is employed to comprehensively unveil the fluorophore-surface plasmon interaction, and the associated surface-modification design is liberally highlighted to balance the surface plasmon-induced fluorescence-enhancement efforts and the surface plasmon-caused fluorescence-quenching effects. In particular, all types of surface structures, for example, silicon, carbon, protein, DNA, polymer, and multilayer, are systematically interrogated in terms of component, thickness, stiffness, and functionality. As a highly interdisciplinary and expanding field in physics, optics, chemistry, and surface chemistry, this Review could be of great interest to a broad readership, in particular, among physical chemists, analytical chemists, and in surface-based sensing and imaging studies.
Collapse
Affiliation(s)
- Qiang Su
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Carson International Cancer Center, Shenzhen University, 1066 Xueyuan Street, Nanshan District, Shenzhen 518055, Guangdong, China.,School of Chemistry, University of Birmingham, Edgbaston B15 2TT, Birmingham, United Kingdom
| | - Cheng Jiang
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Carson International Cancer Center, Shenzhen University, 1066 Xueyuan Street, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Yi Long
- Clinical Research Center, Southern University of Science and Technology Hospital, 6019 Liuxian Street, Xili Avenue, Nanshan District, Shenzhen 518055, Guangdong, China
| |
Collapse
|
2
|
Yang A, Du L, Meng F, Chen J, Yuan X. Selective magnetic responses of silicon nanoparticles modulated by waveguide structures. OPTICS EXPRESS 2020; 28:16333-16341. [PMID: 32549458 DOI: 10.1364/oe.393393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
High-refractive-index nanoparticles (NPs), such as silicon NPs, were considered as effective carriers in their response to a magnetic field at optical frequencies. Such NPs play an important role in many state-of-the-art technologies in nano-optics. Although the resonance properties of these NPs when varying their structural parameters have been studied intensely in the past few years, their interaction with the underlying substrate has seldom been discussed, in particular, when the substrate is a waveguide structure that significantly modulates the optical responses of the NPs. We proposed and studied a selective magnetic coupling system comprising a Si-NP on a metal-dielectric waveguide (MDW). The MDW structure supports either a transverse electric (TE) or a transverse magnetic (TM) mode that induces a large polarization dependence in the magnetic resonance. A new manifestation of the optical spin Hall effect was demonstrated in which a vertical rotating magnetic dipole excites a TE-type waveguide mode with a specific unidirectional emission. Making use of this polarization response, we developed a scanning imaging system that can selectively map the transverse or longitudinal magnetic field component of a focused beam depending on the type of MDW used in the system. This selective magnetic resonance coupling system is expected to be valuable for studying the fundamental interactions between the magnetic field and matter and for developing related nano-applications.
Collapse
|
3
|
Chen M, Cao SH, Li YQ. Surface plasmon-coupled emission imaging for biological applications. Anal Bioanal Chem 2020; 412:6085-6100. [PMID: 32300846 DOI: 10.1007/s00216-020-02635-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/08/2020] [Accepted: 03/31/2020] [Indexed: 11/28/2022]
Abstract
Fluorescence imaging technology has been extensively applied in chemical and biological research profiting from its high sensitivity and specificity. Much attention has been devoted to breaking the light diffraction-limited spatial resolution. However, it remains a great challenge to improve the axial resolution in a way that is accessible in general laboratories. Surface plasmon-coupled emission (SPCE), generated by the interactions between surface plasmons and excited fluorophores in close vicinity of the thin metal film, offers an opportunity for optical imaging with potential application in analysis of molecular and biological systems. Benefiting from the highly directional and distance-dependent properties, SPCE imaging (SPCEi) has displayed excellent performance in bioimaging with improved sensitivity and axial confinement. Herein, we give a brief overview of the development of SPCEi. We describe the unique optical characteristics and constructions of SPCEi systems and highlight recent advances in the use of SPCEi for biological applications. We hope this review provides readers with both the insights and future prospects of SPCEi as a new promising imaging platform for potentially widespread applications in biological research and medical diagnostics. Graphical abstract.
Collapse
Affiliation(s)
- Min Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Shuo-Hui Cao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Yao-Qun Li
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China.
| |
Collapse
|
4
|
An Y, Wang K, Tian J. Recent methodology advances in fluorescence molecular tomography. Vis Comput Ind Biomed Art 2018; 1:1. [PMID: 32240398 PMCID: PMC7098398 DOI: 10.1186/s42492-018-0001-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/30/2018] [Indexed: 12/26/2022] Open
Abstract
Molecular imaging (MI) is a novel imaging discipline that has been continuously developed in recent years. It combines biochemistry, multimodal imaging, biomathematics, bioinformatics, cell & molecular physiology, biophysics, and pharmacology, and it provides a new technology platform for the early diagnosis and quantitative analysis of diseases, treatment monitoring and evaluation, and the development of comprehensive physiology. Fluorescence Molecular Tomography (FMT) is a type of optical imaging modality in MI that captures the three-dimensional distribution of fluorescence within a biological tissue generated by a specific molecule of fluorescent material within a biological tissue. Compared with other optical molecular imaging methods, FMT has the characteristics of high sensitivity, low cost, and safety and reliability. It has become the research frontier and research hotspot of optical molecular imaging technology. This paper took an overview of the recent methodology advances in FMT, mainly focused on the photon propagation model of FMT based on the radiative transfer equation (RTE), and the reconstruction problem solution consist of forward problem and inverse problem. We introduce the detailed technologies utilized in reconstruction of FMT. Finally, the challenges in FMT were discussed. This survey aims at summarizing current research hotspots in methodology of FMT, from which future research may benefit.
Collapse
Affiliation(s)
- Yu An
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Kun Wang
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Wang R, Chen J, Xiang Y, Kuai Y, Wang P, Ming H, Lakowicz JR, Zhang D. Two-Dimensional Photonic Devices based on Bloch Surface Waves with One-Dimensional Grooves. PHYSICAL REVIEW APPLIED 2018; 10:024032. [PMID: 31576366 PMCID: PMC6769415 DOI: 10.1103/physrevapplied.10.024032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Both experiments and simulations show that the polarization state and propagation path of the Bloch surface waves sustained on a dielectric multilayer, can be manipulated with the grooves inscribed on this multilayer. These grooves can be easily producible, accessible and controllable. Various nano-devices for the Bloch surface waves, such as the launcher, beam splitter, reflector, polarization rotator, and even the photonic single-pole double-throw switch, were all experimentally realized with the properly designed grooves, which are consistent with the numerical simulations. The proposed devices will be basic elements for the two-dimensional photonic system, and will find numerous applications, including integrated photonics, molecular sensing, imaging and micro-manipulation.
Collapse
Affiliation(s)
- Ruxue Wang
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Junxue Chen
- School of Science, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P.R. China
| | - Yifeng Xiang
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Yan Kuai
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Pei Wang
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Hai Ming
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Joseph R. Lakowicz
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Douguo Zhang
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| |
Collapse
|
6
|
Chen J, Zhang D, Wang P, Ming H, Lakowicz JR. Strong Polarization Transformation of Bloch Surface Waves. PHYSICAL REVIEW APPLIED 2018; 9:024008. [PMID: 31579272 PMCID: PMC6773976 DOI: 10.1103/physrevapplied.9.024008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Polarization is an intrinsic attribute of optical waves, so manipulating the polarization state of optical surface waves can be of a fundamental importance for the next-generation information and bio-photonics technology. Here, we show theoretically that the polarization of the Bloch surface wave (BSW) on a dielectric multilayer can be transformed between a transverse-electric (TE) state and a transverse-magnetic (TM) state by using the laterally continuous grooves inscribed on this multilayer. This polarization transformation can be enhanced or inhibited by the interference between the reflected BSW beams, which can be tuned by the periodicity and depth of the grooves. The maximum polarization transformation efficiency can be achieved as high as 43% when the number of grooves is increased to 10. A generalized Fresnel formula is proposed to describe the polarization transformation of the BSW beams. Due to this polarization transformation, an anomalous reflection of BSW beams can be realized, which is the inequality between the incident angle and the reflection angle.
Collapse
Affiliation(s)
- Junxue Chen
- School of Science, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Douguo Zhang
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Pei Wang
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hai Ming
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Joseph R. Lakowicz
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| |
Collapse
|
7
|
Zhu L, Wang Y, Zhang D, Wang R, Qiu D, Wang P, Ming H, Badugu R, Rosenfeld M, Lakowicz JR. Imaging optical fields below metal films and metal-dielectric waveguides by a scanning microscope. JOURNAL OF APPLIED PHYSICS 2017; 122:113101. [PMID: 30443078 PMCID: PMC6226257 DOI: 10.1063/1.5002071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/07/2017] [Indexed: 06/09/2023]
Abstract
Laser scanning confocal fluorescence microscopy (LSCM) is now an important method for tissue and cell imaging when the samples are located on the surfaces of glass slides. In the past decade, there has been extensive development of nano-optical structures that display unique effects on incident and transmitted light, which will be used with novel configurations for medical and consumer products. For these applications, it is necessary to characterize the light distribution within short distances from the structures for efficient detection and elimination of bulky optical components. These devices will minimize or possibly eliminate the need for free-space light propagation outside of the device itself. We describe the use of the scanning function of a LSCM to obtain 3D images of the light intensities below the surface of nano-optical structures. More specifically, we image the spatial distributions inside the substrate of fluorescence emission coupled to waveguide modes after it leaks through thin metal films or dielectric-coated metal films. The observed spatial distribution were in general agreement with far-field calculations, but the scanning images also revealed light intensities at angles not observed with classical back focal plane imaging. Knowledge of the subsurface optical intensities will be crucial in the combination of nano-optical structures with rapidly evolving imaging detectors.
Collapse
Affiliation(s)
- Liangfu Zhu
- Department of Optics and Optical Engineering, Institute of Photonics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yong Wang
- Department of Optics and Optical Engineering, Institute of Photonics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Douguo Zhang
- Department of Optics and Optical Engineering, Institute of Photonics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ruxue Wang
- Department of Optics and Optical Engineering, Institute of Photonics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dong Qiu
- Department of Optics and Optical Engineering, Institute of Photonics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Pei Wang
- Department of Optics and Optical Engineering, Institute of Photonics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hai Ming
- Department of Optics and Optical Engineering, Institute of Photonics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ramachandram Badugu
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 West Lombard St., Baltimore, Maryland 21201, USA
| | - Mary Rosenfeld
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 West Lombard St., Baltimore, Maryland 21201, USA
| | - Joseph R Lakowicz
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 West Lombard St., Baltimore, Maryland 21201, USA
| |
Collapse
|
8
|
Zhu L, Badugu R, Zhang D, Wang R, Descrovi E, Lakowicz JR. Radiative decay engineering 8: Coupled emission microscopy for lens-free high-throughput fluorescence detection. Anal Biochem 2017; 531:20-36. [PMID: 28527910 DOI: 10.1016/j.ab.2017.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 05/13/2017] [Accepted: 05/16/2017] [Indexed: 12/13/2022]
Abstract
Fluorescence spectroscopy and imaging are now used throughout the biosciences. Fluorescence microscopes, spectrofluorometers, microwell plate readers and microarray imagers all use multiple optical components to collect, redirect and focus the emission onto single point or array imaging detectors. For almost all biological samples, except those with regular nanoscale features, emission occurs in all directions. With the exception of complex microscope objectives with large collection angles (NA ≤ 0.5), all these instruments collect only a small fraction of the total emission. Because of the increasing knowledge base on fluorophores within near-field (<200 nm) distances from plasmonic and photonic structures we can anticipate the development of compact devices in which the sample to be detected is located directly on solid state detectors such as CCDs or CMOS cameras. Near-field interactions of fluorophores with metallic or dielectric multi-layer structures (MLSs) can capture a large fraction of the total emission. Depending on the composition and dimensions of the MLSs, the spatial distribution of the sample emission results in distinct optical patterns on the detector surface. With either plain glass slides or MLSs the most commonly used front focal plane (FFP) images reveal the x-y spatial distribution of emission from the sample. Another approach, which is often used with two or three-dimensional nanostructures, is back focal plane (BFP) imaging. The BFP images reveal the angular distribution of the emission. The FFP and BFP images occur at certain distances from the sample which is determined by the details of the optical components. Obtaining these images requires multiple optical components and distances which are too large for the compact devices. For devices described in this paper, the images will be detected at a fixed distance between the sample and some arbitrary distance below the MLS which is determined by the geometry and thicknesses of the components. We refer to measurements at these locations as out-of-focal plane (OFP) imaging. Herein we describe a method to measure the optical fields at micron and multi-micron distances below the MLS, which will represent the images seen by an optically coupled array detector. The possibility of sub-surface optical images is illustrated using five different multi-layer structures. This is accomplished using an optical configuration which allows measurement at a front focal plane (FFP), back focal plane (BFP) or any OFP locations. Our OFP imaging method provides a link between the FFP images which reveals the surface distribution of fluorophores with the BFP images that reveal the angular distribution of emission. This linkage can be useful when examining structures which have nanoscale features due to fluorescence or leakage radiation from nanostructures.
Collapse
Affiliation(s)
- Liangfu Zhu
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ramachandram Badugu
- University of Maryland School of Medicine, Department of Biochemistry and Molecular Biology, Center for Fluorescence Spectroscopy, Baltimore, Md 21201, USA
| | - Douguo Zhang
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Ruxue Wang
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Emiliano Descrovi
- Department of Applied Science and Technology, Polytechnic University of Turin, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Joseph R Lakowicz
- University of Maryland School of Medicine, Department of Biochemistry and Molecular Biology, Center for Fluorescence Spectroscopy, Baltimore, Md 21201, USA.
| |
Collapse
|