1
|
Vortman Y, Fitak R, Natan E. Magnetoreception and the ruling hypothesis. J Exp Biol 2025; 228:jeb250252. [PMID: 40207401 DOI: 10.1242/jeb.250252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Whereas science is written by humans and cannot escape emotions intervening with scientific thought, the scientific community should be on guard against unnoticeably adopting a favorite hypothesis. When adopting a favorite hypothesis, scientists tend to review their work in favor of this hypothesis and reject contradictory data. In 1890, Thomas Chrowder Chamberlin first described this phenomenon as when 'the search for facts, and their interpretation are dominated by affection for the favored theory until it appears to its advocate to have been overwhelmingly established'. The favorite hypothesis can then quickly transition into a ruling hypothesis, leading to an unconscious bias in favor of supporting evidence and neglect of contradictory observations. This is especially problematic when a scientific field adopts a favorite hypothesis. In this Commentary, we suggest that the field of animal magnetoreception - in particular mechanisms based on radical-pair chemistry and cryptochrome proteins - may be under the reign of a ruling hypothesis. We argue that repeatedly, conclusions are unfounded or otherwise not consistent with the results presented. We use the case of magnetoreception - the only sense that remains without a clearly described receptor - to raise general awareness of the phenomenon of a ruling hypothesis in the scientific community. We emphasize the distinction between the scientist and the scientific community suffering from a hypothesis regime, and further highlight suggestions to mitigate the risk of working under a ruling hypothesis.
Collapse
Affiliation(s)
- Yoni Vortman
- Department of Animal Sciences, Hula Research Center, Tel Hai Academic College, Upper Galilee, 1220800, Israel
- MIGAL - Galilee Research Institute, Kiryat Shmona, 11016, Israel
| | - Robert Fitak
- Department of Biology, Genomics & Bioinformatics Cluster, University of Central Florida, 4110 Libra Dr., Orlando, FL 32816, USA
| | | |
Collapse
|
2
|
Denton MCJ, Smith LD, Xu W, Pugsley J, Toghill A, Kattnig DR. Magnetosensitivity of tightly bound radical pairs in cryptochrome is enabled by the quantum Zeno effect. Nat Commun 2024; 15:10823. [PMID: 39737951 DOI: 10.1038/s41467-024-55124-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
The radical pair mechanism accounts for the magnetic field sensitivity of a large class of chemical reactions and is hypothesised to underpin numerous magnetosensitive traits in biology, including the avian compass. Traditionally, magnetic field sensitivity in this mechanism is attributed to radical pairs with weakly interacting, well-separated electrons; closely bound pairs were considered unresponsive to weak fields due to arrested spin dynamics. In this study, we challenge this view by examining the FAD-superoxide radical pair within cryptochrome, a protein hypothesised to function as a biological magnetosensor. Contrary to expectations, we find that this tightly bound radical pair can respond to Earth-strength magnetic fields, provided that the recombination reaction is strongly asymmetric-a scenario invoking the quantum Zeno effect. These findings present a plausible mechanism for weak magnetic field effects in biology, suggesting that even closely associated radical pairs, like those involving superoxide, may play a role in magnetic sensing.
Collapse
Affiliation(s)
- Matt C J Denton
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, UK
- Department of Physics, University of Exeter, Stocker Rd, Exeter, Devon, EX4 4QL, UK
| | - Luke D Smith
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, UK
- Department of Physics, University of Exeter, Stocker Rd, Exeter, Devon, EX4 4QL, UK
| | - Wenhao Xu
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, UK
- Department of Physics, University of Exeter, Stocker Rd, Exeter, Devon, EX4 4QL, UK
| | - Jodeci Pugsley
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, UK
- Department of Physics, University of Exeter, Stocker Rd, Exeter, Devon, EX4 4QL, UK
| | - Amelia Toghill
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, UK
- Department of Physics, University of Exeter, Stocker Rd, Exeter, Devon, EX4 4QL, UK
| | - Daniel R Kattnig
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, UK.
- Department of Physics, University of Exeter, Stocker Rd, Exeter, Devon, EX4 4QL, UK.
| |
Collapse
|
3
|
Deviers J, Cailliez F, de la Lande A, Kattnig DR. Avian cryptochrome 4 binds superoxide. Comput Struct Biotechnol J 2024; 26:11-21. [PMID: 38204818 PMCID: PMC10776438 DOI: 10.1016/j.csbj.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Flavin-binding cryptochromes are blue-light sensitive photoreceptors that have been implicated with magnetoreception in some species. The photocycle involves an intra-protein photo-reduction of the flavin cofactor, generating a magnetosensitive radical pair, and its subsequent re-oxidation. Superoxide (O2 • - ) is generated in the re-oxidation with molecular oxygen. The resulting O2 • - -containing radical pairs have also been hypothesised to underpin various magnetosensitive traits, but due to fast spin relaxation when tumbling in solution would require immobilisation. We here describe our insights in the binding of superoxide to cryptochrome 4 from C. livia based on extensive all-atom molecular dynamics studies and density-functional theory calculations. The positively charged "crypt" region that leads to the flavin binding pocket transiently binds O2 • - at 5 flexible binding sites centred on arginine residues. Typical binding times amounted to tens of nanoseconds, but exceptional binding events extended to several hundreds of nanoseconds and slowed the rotational diffusion, thereby realising rotational correlation times as large as 1 ns. The binding sites are particularly efficient in scavenging superoxide escaping from a putative generation site close to the flavin-cofactor, possibly implying a functional relevance. We discuss our findings in view of a potential magnetosensitivity of biological flavin semiquinone/superoxide radical pairs.
Collapse
Affiliation(s)
- Jean Deviers
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, United Kingdom
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405 Orsay, France
| | - Fabien Cailliez
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405 Orsay, France
| | - Aurélien de la Lande
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405 Orsay, France
| | - Daniel R. Kattnig
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, United Kingdom
| |
Collapse
|
4
|
Sotoodehfar A, Rishabh, Zadeh-Haghighi H, Simon C. Quantum theory of a potential biological magnetic field sensor: Radical pair mechanism in flavin adenine dinucleotide biradicals. Comput Struct Biotechnol J 2024; 26:70-77. [PMID: 39697355 PMCID: PMC11652833 DOI: 10.1016/j.csbj.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Recent studies in vitro and in vivo suggest that flavin adenine dinucleotide (FAD) on its own might be able to act as a biological magnetic field sensor. Motivated by these observations, in this study, we develop a detailed quantum theoretical model for the radical pair mechanism (RPM) for the flavin adenine biradical within the FAD molecule. We use the results of existing molecular dynamics simulations to determine the time-varying distance between the radicals on FAD, which we then feed into a quantum master equation treatment of the RPM. In contrast to previous semi-classical models, which are limited to the low-field and high-field cases, our quantum model can predict the full magnetic field dependence of the transient absorption signal. Our model's predictions are consistent with experiments at physiological pH values.
Collapse
Affiliation(s)
- Amirhosein Sotoodehfar
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Rishabh
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
5
|
Luo J. On the anisotropic weak magnetic field effect in radical-pair reactions. J Chem Phys 2023; 158:234302. [PMID: 37318169 DOI: 10.1063/5.0149644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023] Open
Abstract
For more than 60 years, scientists have been fascinated by the fact that magnetic fields even weaker than internal hyperfine fields can markedly affect spin-selective radical-pair reactions. This weak magnetic field effect has been found to arise from the removal of degeneracies in the zero-field spin Hamiltonian. Here, I investigated the anisotropic effect of a weak magnetic field on a model radical pair with an axially symmetric hyperfine interaction. I found that S-T± and T0-T± interconversions driven by the smaller x and y-components of the hyperfine interaction can be hindered or enhanced by a weak external magnetic field, depending on its direction. Additional isotropically hyperfine-coupled nuclear spins preserve this conclusion, although the S → T± and T0 → T± transitions become asymmetric. These results are supported by simulating reaction yields of a more biologically plausible, flavin-based radical pair.
Collapse
Affiliation(s)
- Jiate Luo
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
6
|
Pažėra G, Benjamin P, Mouritsen H, Hore PJ. Isotope Substitution Effects on the Magnetic Compass Properties of Cryptochrome-Based Radical Pairs: A Computational Study. J Phys Chem B 2023; 127:838-845. [PMID: 36669149 PMCID: PMC9900586 DOI: 10.1021/acs.jpcb.2c05335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/29/2022] [Indexed: 01/21/2023]
Abstract
The biophysical mechanism of the magnetic compass sense of migratory songbirds is thought to rely on the photochemical reactions of flavin-containing radical pairs in cryptochrome proteins located in the birds' eyes. A consequence of this hypothesis is that the effect of the Earth's magnetic field on the quantum yields of reaction products should be sensitive to isotopic substitutions that modify the hyperfine interactions in the radicals. In this report, we use spin dynamics simulations to explore the effects of 1H → 2H, 12C → 13C, and 14N → 15N isotopic substitutions on the functioning of cryptochrome 4a as a magnetic direction sensor. Two main conclusions emerge. (1) Uniform deuteration of the flavin chromophore appears to be the best way to boost the anisotropy of the magnetic field effect and to change its symmetry. (2) 13C substitution of three of the 12 flavin carbons, in particular C4, C4a, and C8α, seems to be the best recipe for attenuating the anisotropy. These predictions should give insight into the factors that control the magnetic sensitivity once spectroscopic techniques are available for measuring magnetic field effects on oriented protein samples.
Collapse
Affiliation(s)
| | - Philip Benjamin
- Department
of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K.
| | - Henrik Mouritsen
- Institut
für Biologie und Umweltwissenschaften, Carl-von-Ossietzky Universität Oldenburg, Oldenburg 26111, Germany
- Research
Centre for Neurosensory Science, University
of Oldenburg, Oldenburg 26111, Germany
| | - P. J. Hore
- Department
of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K.
| |
Collapse
|
7
|
Hong G, Pachter R. Effects of inter-radical interactions and scavenging radicals on magnetosensitivity: spin dynamics simulations of proposed radical pairs. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:27-37. [PMID: 36792823 DOI: 10.1007/s00249-023-01630-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/17/2023]
Abstract
Although the magnetosensitivity to weak magnetic fields, such as the geomagnetic field, which was exhibited by radical pairs that are potentially responsible for avian navigation, has been previously investigated by spin dynamics simulations, understanding this behavior for proposed radical pairs in other species is limited. These include, for example, radical pairs formed in the single-cell green alga Chlamydomonas reinhardtii (CraCRY) and in Columba livia (ClCRY4). In addition, the radical pair of FADH• with the one-electron reduced cyclobutane thymine dimer that was shown to be sensitive to weak magnetic fields has been of interest. In this work, we investigated the directional magnetosensitivity of these radical pairs to a weak magnetic field by spin dynamics simulations. We find significant reduction in the magnetosensitivity by inclusion of dipolar and exchange interactions, which can be mitigated by a scavenging radical, as demonstrated for the [FAD•- TyrD•] radical pair in CraCRY, but not for the [FADH• T□T•-] radical pair because of the large exchange coupling. The directional magnetosensitivity of the ClCRY4 [FAD•- TyrE•] radical pair can survive this adverse effect even without the scavenging reaction, possibly motivating further experimental exploration.
Collapse
Affiliation(s)
- Gongyi Hong
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio, 45433, USA
| | - Ruth Pachter
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio, 45433, USA.
| |
Collapse
|
8
|
Bezchastnov V, Domratcheva T. Quantum-mechanical insights into the anisotropic response of the cryptochrome radical pair to a weak magnetic field. J Chem Phys 2023; 158:034303. [PMID: 36681637 DOI: 10.1063/5.0133943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cryptochrome photoreceptors contain a photochemically generated radical pair, which is thought to mediate sensing of the geomagnetic field direction in many living organisms. To gain insight into the response of the cryptochrome to a weak magnetic field, we have studied the quantum-mechanical hyperfine spin states of the radical pair. We identify quantum states responsible for the precise detection of the magnetic field direction, taking into account the strongly axial hyperfine interactions of each radical in the radical pair. The contribution of these states to the formation of the cryptochrome signaling state sharply increases when the magnetic field becomes orthogonal to the hyperfine axis of either radical. Due to such a response, the radical pair may be able to detect the particular field direction normal to the plane containing the hyperfine axes of the radicals.
Collapse
Affiliation(s)
- Victor Bezchastnov
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Tatiana Domratcheva
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Wong SY, Benjamin P, Hore PJ. Magnetic field effects on radical pair reactions: estimation of B1/2 for flavin-tryptophan radical pairs in cryptochromes. Phys Chem Chem Phys 2023; 25:975-982. [PMID: 36519379 PMCID: PMC9811481 DOI: 10.1039/d2cp03793a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Magnetic field effects on the yields of radical pair reactions are often characterised by the "half-field" parameter, B1/2, which encodes useful information on spin relaxation, radical recombination kinetics and electron-electron couplings as well as electron-nuclear hyperfine interactions. Here we use a variety of spin dynamics simulation methods to estimate the hyperfine-only values of B1/2 for the flavin-tryptophan radical pair, [FAD˙- TrpH˙+], thought to be the detector in the magnetic compass sense of migratory songbirds. The main findings are: (a) in the absence of fast recombination and spin relaxation, [FAD˙- TrpH˙+] radical pairs in solution and in the putative magnetoreceptor protein, cryptochrome, have B1/2 ≈ 1.89 mT and 2.46 mT, respectively. (b) The widely used expression for B1/2 due to Weller et al. (Chem. Phys. Lett, 1983, 96, 24-27) is only applicable to small, short-lived (∼5 ns), rapidly tumbling radical pairs in solution, and is quantitatively unreliable in the context of magnetoreception. (c) In the absence of molecular tumbling, the low-field effect for [FAD˙- TrpH˙+] is predicted to be abolished by the anisotropic components of the hyperfine interactions. Armed with the 2.46 mT "base value" for cryptochrome, measurements of B1/2 can be used to understand the impact of spin relaxation on its performance as a magnetic compass sensor.
Collapse
Affiliation(s)
- Siu Ying Wong
- Institut für Physik, Carl-von-Ossietzky Universität OldenburgOldenburg 26111Germany
| | - Philip Benjamin
- Department of Chemistry, University of OxfordOxfordOX1 3QZUK
| | - P. J. Hore
- Department of Chemistry, University of OxfordOxfordOX1 3QZUK
| |
Collapse
|
10
|
Pophof B, Henschenmacher B, Kattnig DR, Kuhne J, Vian A, Ziegelberger G. Biological Effects of Electric, Magnetic, and Electromagnetic Fields from 0 to 100 MHz on Fauna and Flora: Workshop Report. HEALTH PHYSICS 2023; 124:39-52. [PMID: 36480584 PMCID: PMC9722389 DOI: 10.1097/hp.0000000000001624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
ABSTRACT This report summarizes effects of anthropogenic electric, magnetic, and electromagnetic fields in the frequency range from 0 to 100 MHz on flora and fauna, as presented at an international workshop held on 5-7 November in 2019 in Munich, Germany. Such fields may originate from overhead powerlines, earth or sea cables, and from wireless charging systems. Animals and plants react differentially to anthropogenic fields; the mechanisms underlying these responses are still researched actively. Radical pairs and magnetite are discussed mechanisms of magnetoreception in insects, birds, and mammals. Moreover, several insects as well as marine species possess specialized electroreceptors, and behavioral reactions to anthropogenic fields have been reported. Plants react to experimental modifications of their magnetic environment by growth changes. Strong adverse effects of anthropogenic fields have not been described, but knowledge gaps were identified; further studies, aiming at the identification of the interaction mechanisms and the ecological consequences, are recommended.
Collapse
Affiliation(s)
- Blanka Pophof
- Competence Centre for Electromagnetic Fields, Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany
| | - Bernd Henschenmacher
- Competence Centre for Electromagnetic Fields, Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany
| | - Daniel R. Kattnig
- Department of Physics and Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Jens Kuhne
- Competence Centre for Electromagnetic Fields, Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany
| | - Alain Vian
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Gunde Ziegelberger
- Competence Centre for Electromagnetic Fields, Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany
| |
Collapse
|
11
|
Wu JY, Hu XY, Zhu HY, Deng RQ, Ai Q. A Bionic Compass Based on Multiradicals. J Phys Chem B 2022; 126:10327-10334. [PMID: 36448780 DOI: 10.1021/acs.jpcb.2c02711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The underlying chemical and physical mechanism of avian navigation is an important issue of broad interest. One of the most famous candidates is the radical-pair mechanism, which shows that the magnetoreception is achieved by detecting the amount of chemical-reaction product from the singlet state. In the hypothesis, the surrounding nuclear spins play an important role as inducing the coherent transition between the singlet and triplet states. Recently, it was suggested that a multiradical model beyond two radicals can also realize magnetoreception without the assistance of nuclear spins. Inspired by this discovery, we explore the amount of the singlet recombination product in a multiradical model, with a radical bath described by the Lipkin-Meshkov-Glick (LMG) model, which was originally proposed for quantum phase transition (QPT). We show that the sensitivity of the bionic compass can be improved at the critical point. Our results may pave the way for the exploration of the design principle of the bionic compass.
Collapse
Affiliation(s)
- Jia-Yi Wu
- Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing100875, China
| | - Xin-Yuan Hu
- Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing100875, China
| | - Hai-Yuan Zhu
- Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing100875, China
| | - Ru-Qiong Deng
- Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing100875, China
| | - Qing Ai
- Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing100875, China
| |
Collapse
|
12
|
Grüning G, Wong SY, Gerhards L, Schuhmann F, Kattnig DR, Hore PJ, Solov’yov IA. Effects of Dynamical Degrees of Freedom on Magnetic Compass Sensitivity: A Comparison of Plant and Avian Cryptochromes. J Am Chem Soc 2022; 144:22902-22914. [DOI: 10.1021/jacs.2c06233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Gesa Grüning
- Department of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Street 9-11, 26129 Oldenburg, Germany
| | - Siu Ying Wong
- Department of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Street 9-11, 26129 Oldenburg, Germany
| | - Luca Gerhards
- Department of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Street 9-11, 26129 Oldenburg, Germany
| | - Fabian Schuhmann
- Department of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Street 9-11, 26129 Oldenburg, Germany
| | - Daniel R. Kattnig
- Department of Physics and Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K
| | - P. J. Hore
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, U.K
| | - Ilia A. Solov’yov
- Department of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Street 9-11, 26129 Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany
- Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität Oldenburg, Institut für Physik, Ammerländer Heerstreet 114-118, 26129 Oldenburg, Germany
| |
Collapse
|
13
|
Stass DV. Geometrization for Energy Levels of Isotropic Hyperfine Hamiltonian Block and Related Central Spin Problems for an Arbitrarily Complex Set of Spin-1/2 Nuclei. Int J Mol Sci 2022; 23:15199. [PMID: 36499535 PMCID: PMC9739289 DOI: 10.3390/ijms232315199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Description of interacting spin systems relies on understanding the spectral properties of the corresponding spin Hamiltonians. However, the eigenvalue problems arising here lead to algebraic problems too complex to be analytically tractable. This is already the case for the simplest nontrivial (Kmax−1) block for an isotropic hyperfine Hamiltonian for a radical with spin-12 nuclei, where n nuclei produce an n-th order algebraic equation with n independent parameters. Systems described by such blocks are now physically realizable, e.g., as radicals or radical pairs with polarized nuclear spins, appear as closed subensembles in more general radical settings, and have numerous counterparts in related central spin problems. We provide a simple geometrization of energy levels in this case: given n spin-12 nuclei with arbitrary positive couplings ai, take an n-dimensional hyper-ellipsoid with semiaxes ai, stretch it by a factor of n+1 along the spatial diagonal (1, 1, …, 1), read off the semiaxes of thus produced new hyper-ellipsoid qi, augment the set {qi} with q0=0, and obtain the sought n+1 energies as Ek=−12qk2+14∑iai. This procedure provides a way of seeing things that can only be solved numerically, giving a useful tool to gain insights that complement the numeric simulations usually inevitable here, and shows an intriguing connection to discrete Fourier transform and spectral properties of standard graphs.
Collapse
Affiliation(s)
- Dmitri V. Stass
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia;
- International Tomography Center, 630090 Novosibirsk, Russia
| |
Collapse
|
14
|
Smith LD, Chowdhury FT, Peasgood I, Dawkins N, Kattnig DR. Driven Radical Motion Enhances Cryptochrome Magnetoreception: Toward Live Quantum Sensing. J Phys Chem Lett 2022; 13:10500-10506. [PMID: 36332112 PMCID: PMC9677492 DOI: 10.1021/acs.jpclett.2c02840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The mechanism underlying magnetoreception has long eluded explanation. A popular hypothesis attributes this sense to the quantum coherent spin dynamics and spin-selective recombination reactions of radical pairs in the protein cryptochrome. However, concerns about the validity of the hypothesis have been raised because unavoidable inter-radical interactions, such as the strong electron-electron dipolar coupling, appear to suppress its sensitivity. We demonstrate that sensitivity can be restored by driving the spin system through a modulation of the inter-radical distance. It is shown that this dynamical process markedly enhances geomagnetic field sensitivity in strongly coupled radical pairs via Landau-Zener-Stückelberg-Majorana transitions between singlet and triplet states. These findings suggest that a "live" harmonically driven magnetoreceptor can be more sensitive than its "dead" static counterpart.
Collapse
|
15
|
The amphibian magnetic sense(s). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:723-742. [PMID: 36269404 DOI: 10.1007/s00359-022-01584-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022]
Abstract
Sensitivity to the earth's magnetic field is the least understood of the major sensory systems, despite being virtually ubiquitous in animals and of widespread interest to investigators in a wide range of fields from behavioral ecology to quantum physics. Although research on the use of magnetic cues by migratory birds, fish, and sea turtles is more widely known, much of our current understanding of the functional properties of vertebrate magnetoreception has come from research on amphibians. Studies of amphibians established the presence of a light-dependent magnetic compass, a second non-light-dependent mechanism involving particles of magnetite and/or maghemite, and an interaction between these two magnetoreception mechanisms that underlies the "map" component of homing. Simulated magnetic displacement experiments demonstrated the use of a high-resolution magnetic map for short-range homing to breeding ponds requiring a sampling strategy to detect weak spatial gradients in the magnetic field despite daily temporal variation at least an order of magnitude greater. Overall, reliance on a magnetic map for short-range homing places greater demands on the underlying sensory detection, processing, and memory mechanisms than comparable mechanisms used by long-distance migrants. Moreover, unlike sea turtles and migratory birds, amphibians are exceptionally well suited to serve as model organisms in which to characterize the molecular and biophysical mechanisms underlying the light-dependent 'quantum compass'.
Collapse
|
16
|
Ramsay J, Kattnig DR. Radical triads, not pairs, may explain effects of hypomagnetic fields on neurogenesis. PLoS Comput Biol 2022; 18:e1010519. [PMID: 36108063 PMCID: PMC9514667 DOI: 10.1371/journal.pcbi.1010519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/27/2022] [Accepted: 08/27/2022] [Indexed: 12/03/2022] Open
Abstract
Adult hippocampal neurogenesis and hippocampus-dependent cognition in mice have been found to be adversely affected by hypomagnetic field exposure. The effect concurred with a reduction of reactive oxygen species in the absence of the geomagnetic field. A recent theoretical study suggests a mechanistic interpretation of this phenomenon in the framework of the Radical Pair Mechanism. According to this model, a flavin-superoxide radical pair, born in the singlet spin configuration, undergoes magnetic field-dependent spin dynamics such that the pair's recombination is enhanced as the applied magnetic field is reduced. This model has two ostensible weaknesses: a) the assumption of a singlet initial state is irreconcilable with known reaction pathways generating such radical pairs, and b) the model neglects the swift spin relaxation of free superoxide, which abolishes any magnetic sensitivity in geomagnetic/hypomagnetic fields. We here suggest that a model based on a radical triad and the assumption of a secondary radical scavenging reaction can, in principle, explain the phenomenon without unnatural assumptions, thus providing a coherent explanation of hypomagnetic field effects in biology.
Collapse
Affiliation(s)
- Jess Ramsay
- Living Systems Institute and Department of Physics, University of Exeter, Exeter, Devon, United Kingdom
| | - Daniel R. Kattnig
- Living Systems Institute and Department of Physics, University of Exeter, Exeter, Devon, United Kingdom
| |
Collapse
|
17
|
Deviers J, Cailliez F, Gutiérrez BZ, Kattnig DR, de la Lande A. Ab initio derivation of flavin hyperfine interactions for the protein magnetosensor cryptochrome. Phys Chem Chem Phys 2022; 24:16784-16798. [PMID: 35775941 DOI: 10.1039/d1cp05804e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The radicals derived from flavin adenine dinucleotide (FAD) are a corner stone of recent hypotheses about magnetoreception, including the compass of migratory songbirds. These models attribute a magnetic sense to coherent spin dynamics in radical pairs within the flavo-protein cryptochrome. The primary determinant of sensitivity and directionality of this process are the hyperfine interactions of the involved radicals. Here, we present a comprehensive computational study of the hyperfine couplings in the protonated and unprotonated FAD radicals in cryptochrome 4 from C. livia. We combine long (800 ns) molecular dynamics trajectories to accurate quantum chemistry calculations. Hyperfine parameters are derived using auxiliary density functional theory applied to cluster and hybrid QM/MM (Quantum Mechanics/Molecular Mechanics) models comprising the FAD and its significant surrounding environment, as determined by a detailed sensitivity analysis. Thanks to this protocol we elucidate the sensitivity of the hyperfine interaction parameters to structural fluctuations and the polarisation effect of the protein environment. We find that the ensemble-averaged hyperfine interactions are predominantly governed by thermally induced geometric distortions of the flavin. We discuss our results in view of the expected performance of these radicals as part of a magnetoreceptor. Our data could be used to parametrize spin Hamiltonians including not only average values but also standard deviations.
Collapse
Affiliation(s)
- Jean Deviers
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, UK.,Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405 Orsay, France.
| | - Fabien Cailliez
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405 Orsay, France.
| | - Bernardo Zúñiga Gutiérrez
- Departamento de Química, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, C. P. 44430, Guadalajara Jal, Mexico
| | - Daniel R Kattnig
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, UK
| | - Aurélien de la Lande
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405 Orsay, France.
| |
Collapse
|
18
|
Smith LD, Deviers J, Kattnig DR. Observations about utilitarian coherence in the avian compass. Sci Rep 2022; 12:6011. [PMID: 35397661 PMCID: PMC8994785 DOI: 10.1038/s41598-022-09901-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022] Open
Abstract
It is hypothesised that the avian compass relies on spin dynamics in a recombining radical pair. Quantum coherence has been suggested as a resource to this process that nature may utilise to achieve increased compass sensitivity. To date, the true functional role of coherence in these natural systems has remained speculative, lacking insights from sufficiently complex models. Here, we investigate realistically large radical pair models with up to 21 nuclear spins, inspired by the putative magnetosensory protein cryptochrome. By varying relative radical orientations, we reveal correlations of several coherence measures with compass fidelity. Whilst electronic coherence is found to be an ineffective predictor of compass sensitivity, a robust correlation of compass sensitivity and a global coherence measure is established. The results demonstrate the importance of realistic models, and appropriate choice of coherence measure, in elucidating the quantum nature of the avian compass.
Collapse
Affiliation(s)
- Luke D Smith
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Jean Deviers
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Daniel R Kattnig
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
19
|
Shaev IA, Novikov VV, Yablokova EV, Fesenko EE. A Brief Review of the Current State of Research on the Biological Effects of Weak Magnetic Fields. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
20
|
Sozer SC, Akdogan Y. Characterization of Water Solubility and Binding of Spin Labeled Drugs in the Presence of Albumin Nanoparticles and Proteins by Electron Paramagnetic Resonance Spectroscopy. ChemistrySelect 2022. [DOI: 10.1002/slct.202103890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sumeyra C. Sozer
- Materials Science and Engineering Department Izmir Institute of Technology Urla Izmir Turkey
| | - Yasar Akdogan
- Materials Science and Engineering Department Izmir Institute of Technology Urla Izmir Turkey
| |
Collapse
|
21
|
Deviers J, Cailliez F, de la Lande A, Kattnig DR. Anisotropic magnetic field effects in the re-oxidation of cryptochrome in the presence of scavenger radicals. J Chem Phys 2022; 156:025101. [PMID: 35032990 DOI: 10.1063/5.0078115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The avian compass and many other of nature's magnetoreceptive traits are widely ascribed to the protein cryptochrome. There, magnetosensitivity is thought to emerge as the spin dynamics of radicals in the applied magnetic field enters in competition with their recombination. The first and dominant model makes use of a radical pair. However, recent studies have suggested that magnetosensitivity could be markedly enhanced for a radical triad, the primary radical pair of which undergoes a spin-selective recombination reaction with a third radical. Here, we test the practicality of this supposition for the reoxidation reaction of the reduced FAD cofactor in cryptochrome, which has been implicated with light-independent magnetoreception but appears irreconcilable with the classical radical pair mechanism (RPM). Based on the available realistic cryptochrome structures, we predict the magnetosensitivity of radical triad systems comprising the flavin semiquinone, the superoxide, and a tyrosine or ascorbyl scavenger radical. We consider many hyperfine-coupled nuclear spins, the relative orientation and placement of the radicals, their coupling by the electron-electron dipolar interaction, and spin relaxation in the superoxide radical in the limit of instantaneous decoherence, which have not been comprehensively considered before. We demonstrate that these systems can provide superior magnetosensitivity under realistic conditions, with implications for dark-state cryptochrome magnetoreception and other biological magneto- and isotope-sensitive radical recombination reactions.
Collapse
Affiliation(s)
- Jean Deviers
- Department of Physics and Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD Exeter, United Kingdom
| | - Fabien Cailliez
- Institut de Chimie Physique, Université Paris Saclay, CNRS (UMR 8000), 15 avenue Jean Perrin, 91405 Orsay, France
| | - Aurélien de la Lande
- Institut de Chimie Physique, Université Paris Saclay, CNRS (UMR 8000), 15 avenue Jean Perrin, 91405 Orsay, France
| | - Daniel R Kattnig
- Department of Physics and Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD Exeter, United Kingdom
| |
Collapse
|
22
|
Babcock N, Kattnig DR. Radical Scavenging Could Answer the Challenge Posed by Electron-Electron Dipolar Interactions in the Cryptochrome Compass Model. JACS AU 2021; 1:2033-2046. [PMID: 34841416 PMCID: PMC8611662 DOI: 10.1021/jacsau.1c00332] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Many birds are endowed with a visual magnetic sense that may exploit magnetosensitive radical recombination processes in the protein cryptochrome. In this widely accepted but unproven model, geomagnetic sensitivity is suggested to arise from variations in the recombination rate of a pair of radicals, whose unpaired electron spins undergo coherent singlet-triplet interconversion in the geomagnetic field by coupling to nuclear spins via hyperfine interactions. However, simulations of this conventional radical pair mechanism (RPM) predicted only tiny magnetosensitivities for realistic conditions because the RPM's directional sensitivity is strongly suppressed by the intrinsic electron-electron dipolar (EED) interactions, casting doubt on its viability as a magnetic sensor. We show how this RPM-suppression problem is overcome in a three-radical system in which a third "scavenger" radical reacts with one member of the primary pair. We use this finding to predict substantial magnetic field effects that exceed those of the RPM in the presence of EED interactions in animal cryptochromes.
Collapse
Affiliation(s)
- Nathan
Sean Babcock
- Quantum
Biology Laboratory, Howard University, 2400 Sixth Street NW, Washington District of Columbia, 20059, United States of America
- Living
Systems Institute and Department of Physics University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Daniel R. Kattnig
- Living
Systems Institute and Department of Physics University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom
| |
Collapse
|
23
|
Wong SY, Wei Y, Mouritsen H, Solov'yov IA, Hore PJ. Cryptochrome magnetoreception: four tryptophans could be better than three. J R Soc Interface 2021; 18:20210601. [PMID: 34753309 PMCID: PMC8580466 DOI: 10.1098/rsif.2021.0601] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/14/2021] [Indexed: 12/28/2022] Open
Abstract
The biophysical mechanism of the magnetic compass sensor in migratory songbirds is thought to involve photo-induced radical pairs formed in cryptochrome (Cry) flavoproteins located in photoreceptor cells in the eyes. In Cry4a-the most likely of the six known avian Crys to have a magnetic sensing function-four radical pair states are formed sequentially by the stepwise transfer of an electron along a chain of four tryptophan residues to the photo-excited flavin. In purified Cry4a from the migratory European robin, the third of these flavin-tryptophan radical pairs is more magnetically sensitive than the fourth, consistent with the smaller separation of the radicals in the former. Here, we explore the idea that these two radical pair states of Cry4a could exist in rapid dynamic equilibrium such that the key magnetic and kinetic properties are weighted averages. Spin dynamics simulations suggest that the third radical pair is largely responsible for magnetic sensing while the fourth may be better placed to initiate magnetic signalling particularly if the terminal tryptophan radical can be reduced by a nearby tyrosine. Such an arrangement could have allowed independent optimization of the essential sensing and signalling functions of the protein. It might also rationalize why avian Cry4a has four tryptophans while Crys from plants have only three.
Collapse
Affiliation(s)
- Siu Ying Wong
- Institut für Physik, Carl-von-Ossietzky Universität Oldenburg, Oldenburg 26111, Germany
| | - Yujing Wei
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Henrik Mouritsen
- Institut für Biologie und Umweltwissenschaften, Carl-von-Ossietzky Universität Oldenburg, Oldenburg 26111, Germany
- Research Centre for Neurosensory Science, University of Oldenburg, Oldenburg 26111, Germany
| | - Ilia A. Solov'yov
- Institut für Physik, Carl-von-Ossietzky Universität Oldenburg, Oldenburg 26111, Germany
| | - P. J. Hore
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| |
Collapse
|
24
|
Hamada M, Iwata T, Fuki M, Kandori H, Weber S, Kobori Y. Orientations and water dynamics of photoinduced secondary charge-separated states for magnetoreception by cryptochrome. Commun Chem 2021; 4:141. [PMID: 36697801 PMCID: PMC9814139 DOI: 10.1038/s42004-021-00573-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/02/2021] [Indexed: 01/28/2023] Open
Abstract
In the biological magnetic compass, blue-light photoreceptor protein of cryptochrome is thought to conduct the sensing of the Earth's magnetic field by photoinduced sequential long-range charge-separation (CS) through a cascade of tryptophan residues, WA(H), WB(H) and WC(H). Mechanism of generating the weak-field sensitive radical pair (RP) is poorly understood because geometries, electronic couplings and their modulations by molecular motion have not been investigated in the secondary CS states generated prior to the terminal RP states. In this study, water dynamics control of the electronic coupling is revealed to be a key concept for sensing the direction of weak magnetic field. Geometry and exchange coupling (singlet-triplet energy gap: 2J) of photoinduced secondary CS states composed of flavin adenine dinucleotide radical anion (FAD-•) and radical cation WB(H)+• in the cryptochrome DASH from Xenopus laevis were clarified by time-resolved electron paramagnetic resonance. We found a time-dependent energetic disorder in 2J and was interpreted by a trap CS state capturing one reorientated water molecule at 120 K. Enhanced electron-tunneling by water-libration was revealed for the terminal charge-separation event at elevated temperature. This highlights importance of optimizing the electronic coupling for regulation of the anisotropic RP yield on the possible magnetic compass senses.
Collapse
Affiliation(s)
- Misato Hamada
- grid.31432.370000 0001 1092 3077Department of Chemistry, Graduate School of Science, Kobe University, 1‒1 Rokkodai‒cho, Nada‒ku, Kobe, 657‒8501 Japan
| | - Tatsuya Iwata
- grid.265050.40000 0000 9290 9879Department of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274‒8510 Japan
| | - Masaaki Fuki
- grid.31432.370000 0001 1092 3077Department of Chemistry, Graduate School of Science, Kobe University, 1‒1 Rokkodai‒cho, Nada‒ku, Kobe, 657‒8501 Japan ,grid.31432.370000 0001 1092 3077Molecular Photoscience Research Center, Kobe University, 1‒1 Rokkodai‒cho, Nada‒ku, Kobe, 657‒8501 Japan
| | - Hideki Kandori
- grid.47716.330000 0001 0656 7591Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555 Japan ,grid.47716.330000 0001 0656 7591OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555 Japan
| | - Stefan Weber
- grid.5963.9Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Yasuhiro Kobori
- grid.31432.370000 0001 1092 3077Department of Chemistry, Graduate School of Science, Kobe University, 1‒1 Rokkodai‒cho, Nada‒ku, Kobe, 657‒8501 Japan ,grid.31432.370000 0001 1092 3077Molecular Photoscience Research Center, Kobe University, 1‒1 Rokkodai‒cho, Nada‒ku, Kobe, 657‒8501 Japan
| |
Collapse
|
25
|
Towards Quantum-Chemical Modeling of the Activity of Anesthetic Compounds. Int J Mol Sci 2021; 22:ijms22179272. [PMID: 34502179 PMCID: PMC8431746 DOI: 10.3390/ijms22179272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022] Open
Abstract
The modeling of the activity of anesthetics is a real challenge because of their unique electronic and structural characteristics. Microscopic approaches relevant to the typical features of these systems have been developed based on the advancements in the theory of intermolecular interactions. By stressing the quantum chemical point of view, here, we review the advances in the field highlighting differences and similarities among the chemicals within this group. The binding of the anesthetics to their partners has been analyzed by Symmetry-Adapted Perturbation Theory to provide insight into the nature of the interaction and the modeling of the adducts/complexes allows us to rationalize their anesthetic properties. A new approach in the frame of microtubule concept and the importance of lipid rafts and channels in membranes is also discussed.
Collapse
|
26
|
Kattnig DR. F-cluster: Reaction-induced spin correlation in multi-radical systems. J Chem Phys 2021; 154:204105. [PMID: 34241165 DOI: 10.1063/5.0052573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We provide a theoretical analysis of spin-selective recombination processes in clusters of n ≥ 3 radicals. Specifically, we discuss how spin correlation can ensue from random encounters of n radicals, i.e., "F-clusters" as a generalization of radical F-pairs, acting as precursors of spin-driven magnetic field effects. Survival probabilities and the spin correlation of the surviving radical population, as well as transients, are evaluated by expanding the spin density operator in an operator basis that is closed under application of the Haberkorn recombination operator and singlet-triplet dephasing. For the primary spin cluster, the steady-state density operator is found to be independent of the details of the recombination network, provided that it is irreducible; pairs of surviving radicals are triplet-polarized independent of whether they are actually reacting with each other. The steady state is independent of the singlet-triplet dephasing, but the kinetics and the population of sister clusters of smaller size can depend on the degree of dephasing. We also analyze reaction-induced singlet-triplet interconversion in radical pairs due to radical scavenging by initially uncorrelated radicals ("chemical Zeno effect"). We generalize previous treatments for radical triads by discussing the effect of spin-selective recombination in the original pair and extending the analysis to four radicals, i.e., radical pairs interacting with two radical scavengers.
Collapse
Affiliation(s)
- Daniel R Kattnig
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, Devon EX4 4QD, United Kingdom
| |
Collapse
|
27
|
Wiltschko R, Nießner C, Wiltschko W. The Magnetic Compass of Birds: The Role of Cryptochrome. Front Physiol 2021; 12:667000. [PMID: 34093230 PMCID: PMC8171495 DOI: 10.3389/fphys.2021.667000] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/08/2021] [Indexed: 12/28/2022] Open
Abstract
The geomagnetic field provides directional information for birds. The avian magnetic compass is an inclination compass that uses not the polarity of the magnetic field but the axial course of the field lines and their inclination in space. It works in a flexible functional window, and it requires short-wavelength light. These characteristics result from the underlying sensory mechanism based on radical pair processes in the eyes, with cryptochrome suggested as the receptor molecule. The chromophore of cryptochrome, flavin adenine dinucleotide (FAD), undergoes a photocycle, where radical pairs are formed during photo-reduction as well as during re-oxidation; behavioral data indicate that the latter is crucial for detecting magnetic directions. Five types of cryptochromes are found in the retina of birds: cryptochrome 1a (Cry1a), cryptochrome 1b, cryptochrome 2, cryptochrome 4a, and cryptochrome 4b. Because of its location in the outer segments of the ultraviolet cones with their clear oil droplets, Cry1a appears to be the most likely receptor molecule for magnetic compass information.
Collapse
Affiliation(s)
- Roswitha Wiltschko
- FB Biowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Christine Nießner
- FB Biowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Wolfgang Wiltschko
- FB Biowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
28
|
Karki N, Vergish S, Zoltowski BD. Cryptochromes: Photochemical and structural insight into magnetoreception. Protein Sci 2021; 30:1521-1534. [PMID: 33993574 DOI: 10.1002/pro.4124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022]
Abstract
Cryptochromes (CRYs) function as blue light photoreceptors in diverse physiological processes in nearly all kingdoms of life. Over the past several decades, they have emerged as the most likely candidates for light-dependent magnetoreception in animals, however, a long history of conflicts between in vitro photochemistry and in vivo behavioral data complicate validation of CRYs as a magnetosensor. In this review, we highlight the origins of conflicts regarding CRY photochemistry and signal transduction, and identify recent data that provides clarity on potential mechanisms of signal transduction in magnetoreception. The review primarily focuses on examining differences in photochemistry and signal transduction in plant and animal CRYs, and identifies potential modes of convergent evolution within these independent lineages that may identify conserved signaling pathways.
Collapse
Affiliation(s)
- Nischal Karki
- Department of Chemistry, Southern Methodist University, Dallas, Texas, USA
| | - Satyam Vergish
- Department of Chemistry, Southern Methodist University, Dallas, Texas, USA
| | - Brian D Zoltowski
- Department of Chemistry, Southern Methodist University, Dallas, Texas, USA
| |
Collapse
|
29
|
Stass D, Bagryansky V, Molin Y. Simple rules for resolved level-crossing spectra in magnetic field effects on reaction yields. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:77-91. [PMID: 37904762 PMCID: PMC10539838 DOI: 10.5194/mr-2-77-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/11/2021] [Indexed: 11/01/2023]
Abstract
In this work we derive conditions under which a level-crossing line in a magnetic field effect curve for a recombining radical pair will be equivalent to the electron spin resonance (ESR) spectrum and discuss three simple rules for qualitative prediction of the level-crossing spectra.
Collapse
Affiliation(s)
- Dmitri V. Stass
- Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk,
630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Victor A. Bagryansky
- Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk,
630090, Russia
| | - Yuri N. Molin
- Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk,
630090, Russia
| |
Collapse
|
30
|
Keens RH, Sampson C, Kattnig DR. How symmetry-breaking can amplify the magnetosensitivity of dipolarly coupled n-radical systems. J Chem Phys 2021; 154:094101. [PMID: 33685169 DOI: 10.1063/5.0041552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In systems of more than two reactive radicals, the radical recombination probability can be magnetosensitive due to the mere effect of the inter-radical electron-electron dipolar coupling. Here, we demonstrate that this principle, previously established for three-radical systems, generalizes to n-radical systems. We focus on radical systems in the plane and explore the effects of symmetry, in particular its absence, on the associated magnetic field effects of the recombination yield. We show, by considering regular configurations and slightly distorted geometries, that the breaking of geometric symmetry can lead to an enhancement of the magnetosensitivity of these structures. Furthermore, we demonstrate the presence of effects at low-field that are abolished in the highly symmetric case. This could be important to the understanding of the behavior of radicals in biological environments in the presence of weak magnetic fields comparable to the Earth's, as well as the construction of high-precision quantum sensing devices.
Collapse
Affiliation(s)
- Robert H Keens
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, Devon EX4 4QD, United Kingdom
| | - Chris Sampson
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, Devon EX4 4QD, United Kingdom
| | - Daniel R Kattnig
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, Devon EX4 4QD, United Kingdom
| |
Collapse
|
31
|
Wong SY, Solov'yov IA, Hore PJ, Kattnig DR. Nuclear polarization effects in cryptochrome-based magnetoreception. J Chem Phys 2021; 154:035102. [PMID: 33499614 DOI: 10.1063/5.0038947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The mechanism of the magnetic compass sense of migratory songbirds is thought to involve magnetically sensitive chemical reactions of light-induced radical pairs in cryptochrome proteins located in the birds' eyes. However, it is not yet clear whether this mechanism would be sensitive enough to form the basis of a viable compass. In the present work, we report spin dynamics simulations of models of cryptochrome-based radical pairs to assess whether accumulation of nuclear spin polarization in multiple photocycles could lead to significant enhancements in the sensitivity with which the proteins respond to the direction of the geomagnetic field. Although buildup of nuclear polarization appears to offer sensitivity advantages in the more idealized model systems studied, we find that these enhancements do not carry over to conditions that more closely resemble the situation thought to exist in vivo. On the basis of these simulations, we conclude that buildup of nuclear polarization seems unlikely to be a source of significant improvements in the performance of cryptochrome-based radical pair magnetoreceptors.
Collapse
Affiliation(s)
- Siu Ying Wong
- Institut für Physik, Carl-von-Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany
| | - Ilia A Solov'yov
- Institut für Physik, Carl-von-Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany
| | - P J Hore
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Daniel R Kattnig
- Living Systems Institute and Department of Physics, University of Exeter, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
32
|
Krochmal AR, Roth TC, Simmons NT. The geomagnetic field does not appear to influence navigation in Eastern painted turtles. Ethology 2020. [DOI: 10.1111/eth.13121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Timothy C. Roth
- Department of Psychology Franklin and Marshall College Lancaster Pennsylvania
| | - Nathaniel T. Simmons
- Department of Biology Washington College Chestertown Maryland
- Still Pond Chestertown, Maryland
| |
Collapse
|
33
|
Zastko L, Makinistian L, Moravčíková A, Jakuš J, Belyaev I. Effect of Intermittent ELF MF on Umbilical Cord Blood Lymphocytes. Bioelectromagnetics 2020; 41:649-655. [PMID: 33190314 DOI: 10.1002/bem.22302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/11/2020] [Accepted: 10/10/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Lucián Zastko
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Leonardo Makinistian
- Department of Physics, Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis-CONICET, San Luis, Argentina
| | - Andrea Moravčíková
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ján Jakuš
- Department of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Igor Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|