1
|
Rawat R, Singh S, Roy S, Dubey S, Goswami T, Mathur A, McLaughlin J. Ultrasensitive electroanalytical sensing platform using aptamer-conjugated V 2CT x MXene for the detection of the HER-2 biomarker. NANOSCALE 2025; 17:10761-10770. [PMID: 40223744 DOI: 10.1039/d4nr04503c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Breast cancer is a leading cause of mortality among women globally, with the human epidermal growth factor receptor-2 (HER-2) serving as a vital biomarker for its diagnosis and management. In this study, an electrochemical aptasensor was developed using V2CTx MXene for the sensitive and selective quantification of HER-2. The sensor's electrochemical performance was evaluated through cyclic voltammetry (CV) and square wave voltammetry (SWV) that demonstrated a wide linear detection range of 1 ng mL-1 to 100 μg mL-1. The aptasensor achieved an exceptional detection limit of 0.36 ng mL-1 and a quantification limit of 1.96 ng mL-1 under optimized conditions. Furthermore, the sensor displayed excellent selectivity for HER-2 against other biomarkers and retained stability for 40 days, making it suitable for prolonged use. The high electrochemical response was attributed to the exceptional surface-to-volume ratio and conductivity of the V2CTx MXene, enabling efficient aptamer immobilization and signal enhancement. These findings highlight the potential of the developed aptasensor as a non-invasive, reliable, and cost-effective platform for early HER-2 detection, paving the way for improved breast cancer diagnosis and monitoring.
Collapse
Affiliation(s)
- Reema Rawat
- Health Technology Cluster, School of Health Sciences and Technology, UPES, Dehradun, India.
| | - Sonam Singh
- Department of Chemistry, School of Advanced Engineering, UPES, Dehradun, India
| | - Souradeep Roy
- Health Technology Cluster, School of Health Sciences and Technology, UPES, Dehradun, India.
| | - Samarika Dubey
- The Tons Bridge School, Nanda ki Chowki, Premnagar, Dehradun, India
| | - Tapas Goswami
- Department of Chemistry, School of Advanced Engineering, UPES, Dehradun, India
| | - Ashish Mathur
- Centre for Interdisciplinary Research and Innovation (CIDRI), UPES, Dehradun, India
| | | |
Collapse
|
2
|
Ren X, Fang L, Hu Y, Wu F, Liu G, Zhang S, Luo H. Enhancing both the long-term stability and methylene blue adsorption performance of TiVCT xvia a facile antioxidation treatment. NANOSCALE 2025; 17:10065-10081. [PMID: 40131266 DOI: 10.1039/d4nr05382f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
MXenes are widely recognized as excellent dye adsorption materials. However, their propensity to oxidize will greatly reduce their stability and performance. In the present work, a simple antioxidation treatment was applied to TiVCTx using three acid antioxidants (oxalic acid (OA), sodium citrate (SC), and tartaric acid (TA)) and their effects on the stability and methylene blue adsorption performance were investigated. The stability of TiVCTx stored in an aqueous solution within 14 days was assessed using XRD and XPS. The antioxidant-treated TiVCTx showed a significant improvement in both long-term stability and MB adsorption properties, with TA-TiVCTx demonstrating the best performance. The MB adsorption of the as-prepared TiVCTx was physical and multilayer, but it became a multilayer process where physical and chemical adsorptions coexist after antioxidation treatment. The maximum adsorption capacity of TA-TiVCTx reached 8061.03 mg g-1 and remained at 3887.28 mg g-1 after 14 days of storage, far exceeding the performance of other reported adsorbents. It is found that the enhanced stability is attributed to the dense protective layer formed by the chelation between the antioxidant and TiVCTx, and the improved MB adsorption performance is ascribed to the synergistic effect of electrostatic adsorption between TiVCTx and MB and the Bloch reaction between the antioxidants and the MB molecules. The differences in the enhancement effects of the various antioxidants are related to the number of carboxyl and hydroxyl groups in the antioxidant molecules. This work provides useful reference and guidance for obtaining MXenes with better stability and adsorption performance.
Collapse
Affiliation(s)
- Xianliang Ren
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing, 400044, P.R. China.
| | - Liang Fang
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing, 400044, P.R. China.
- Center of Modern Physics, Institute for Smart City of Chongqing University in Liyang, Liyang, Jiangsu Province, 213300, P.R. China
| | - Yi Hu
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing, 400044, P.R. China.
| | - Fang Wu
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing, 400044, P.R. China.
| | - Gaobin Liu
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing, 400044, P.R. China.
| | - Shufang Zhang
- College of AI and BigData, Chongqing Polytechnic University of Electronic Technology, Chongqing, 401331, P.R. China
| | - Haijun Luo
- Key Laboratory on Optoelectronic Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, P.R. China.
| |
Collapse
|
3
|
Shoaib AGM, Yılmaz M, El Sikaily A, Hassaan MA, El-Nemr MA, El Nemr A. Isotherm, kinetics and ANN analysis of methylene blue adsorption onto nitrogen doped Ulva lactuca Biochar. Sci Rep 2025; 15:10642. [PMID: 40148409 PMCID: PMC11950198 DOI: 10.1038/s41598-025-92973-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
This study investigates the removal of methylene blue (MB) dye from aqueous solutions using a novel adsorbent, green algae (Ulva lactuca)-derived biochar-ammonia (NDULB), produced through activation with 85% sulfuric acid and hydrothermal treatment with ammonium hydroxide. The characterization of NDULB was carried out through various techniques, including BET surface area analysis and scanning electron microscopy, confirming its high surface area and effective porosity for dye adsorption. This work thoroughly examines the effects of initial MB dye concentration, solution pH, contact time, and NDULB dose on adsorption. The adsorption data were modeled using Langmuir, Freundlich, Tempkin, and Dubinin-Radushkevich isotherms, with the Freundlich model showing the best fit, indicating multilayer adsorption on a heterogeneous surface. According to the investigation's findings, with an initial MB concentration of 200 ppm and an NDULB dosage of 1.25 g L-1, the adsorption capacity at equilibrium (qe) is 966.31 mg g-1. Kinetic analysis revealed that the pseudo-second-order model provided the best fit for the experimental data, suggesting chemisorption as the dominant adsorption mechanism. The artificial neural network modeling has been studied and reported. The study clarifies the effects of multiple variables on adsorption, which might lead to key insights to enlighten the development of effective wastewater treatment strategies. The study demonstrates that NDULB offers a promising, sustainable alternative for MB dye removal in wastewater treatment, with significant implications for large-scale application.
Collapse
Affiliation(s)
- Amany G M Shoaib
- National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Murat Yılmaz
- BahçE Vocational School, Department of Chemistry and Chemical Processing Technologies, Osmaniye Korkut Ata University, Osmaniye, 80000, Türkiye, Turkey
| | - Amany El Sikaily
- National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Mohamed A Hassaan
- National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Mohamed A El-Nemr
- Department of Chemical Engineering, Faculty of Engineering, Minia University, Minia, 61519, Egypt
- The Higher Canal Institute of Engineering and Technology, Al Salam 1 - Abu Bakr Al Siddiq Street, Suez, Egypt
| | - Ahmed El Nemr
- National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt.
| |
Collapse
|
4
|
Xue S, He D, Zhang H, Zhang Y, Wang Y, Zeng Y, Liu S, Chen N. 2D V 2C MXene/2D g-C 3N 4 nanosheet heterojunctions constructed via a one-pot method for remedying water pollution through high-efficient adsorption together with in situ photocatalytic degradation. RSC Adv 2025; 15:1792-1804. [PMID: 39835214 PMCID: PMC11744460 DOI: 10.1039/d4ra07222g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
With the development of modern industry, the problems of water pollution have become increasingly serious. There is a strong need to develop highly efficient and environmentally friendly technologies to address water pollution. In this work, a novel 2D V2C MXene/2D g-C3N4 nanosheet heterojunction was constructed via a one-pot method. The obtained composite materials displayed excellent purifying capacity for dye pollutants, with removal ratios for crystal violet (CV), Rhodamine B (RhB) and methylene blue (MB) of 99.5%, 99.5%, and 95% within 80 min (including an adsorption process for 50 min and photodegradation process for 27 min), respectively. The extraordinary purifying capacity was accomplished through high-efficient adsorption together with in situ photocatalytic degradation within the unique 2D/2D heterojunction structure. The successful exploitation of 2D V2C MXene/2D g-C3N4 nanosheet heterojunctions provided a simple method to efficiently remedy water pollution.
Collapse
Affiliation(s)
- Shishan Xue
- Chemistry and Chemical Engineering School, Mianyang Teachers' College Mianxing Road No. 166 Mianyang City Sichuan Province 621000 China
| | - Dengliang He
- Chemistry and Chemical Engineering School, Mianyang Teachers' College Mianxing Road No. 166 Mianyang City Sichuan Province 621000 China
| | - Herong Zhang
- Chemistry and Chemical Engineering School, Mianyang Teachers' College Mianxing Road No. 166 Mianyang City Sichuan Province 621000 China
| | - Yuning Zhang
- Chemistry and Chemical Engineering School, Mianyang Teachers' College Mianxing Road No. 166 Mianyang City Sichuan Province 621000 China
| | - Yu Wang
- Chemistry and Chemical Engineering School, Mianyang Teachers' College Mianxing Road No. 166 Mianyang City Sichuan Province 621000 China
| | - Yurong Zeng
- Chemistry and Chemical Engineering School, Mianyang Teachers' College Mianxing Road No. 166 Mianyang City Sichuan Province 621000 China
| | - Shuxin Liu
- Chemistry and Chemical Engineering School, Mianyang Teachers' College Mianxing Road No. 166 Mianyang City Sichuan Province 621000 China
| | - Ning Chen
- Chemistry and Chemical Engineering School, Mianyang Teachers' College Mianxing Road No. 166 Mianyang City Sichuan Province 621000 China
| |
Collapse
|
5
|
Nguyen-Minh Le T, Le Minh Pham T, Phan TB, Kawazoe Y. Stabilization of small organic molecules on V 2C and V 2CO 2 MXenes: first-principles insights into the performance of van der Waals functionals and the effect of oxygen vacancies. RSC Adv 2025; 15:301-311. [PMID: 39758901 PMCID: PMC11694719 DOI: 10.1039/d4ra06676f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025] Open
Abstract
The adsorption of small organic molecules on pristine V2C MXene and its derivatives is investigated by first-principles density functional theory calculations. By employing state-of-the-art van der Waals (vdW) density functionals, the binding affinity of studied molecules, i.e., CH4, CO2, and H2O on MXene adsorbents is well described by more recent vdW functionals, i.e., SCAN-rvv10. Although both CH4 and CO2 are nonpolar molecules, on pristine and oxygen-vacancy surfaces, they show a different range of adsorption energies, in which CH4 is more inert and has weaker binding than CO2. CO2 stays intact in its molecular forms for most of the tested functionals, except for the case of the vdW-DF functional, where CO2 exhibits a dissociation regardless of its initial adsorption geometry. For full surface terminations, the adsorption affinity of all involved species is comparable within the same range, varying from -0.10 to -0.20 eV, attributed to either weak dispersion interactions or hydrogen bonds. The binding of H2O is much more pronounced compared to CO2 and CH4 in the presence of oxygen vacancies with the highest adsorption energy of -1.33 eV, vs. -0.67, and -0.20 eV obtained for H2O, CO2, and CH4 respectively. H2O can dissociate with a small activation energy barrier of 0.40 eV, much smaller than its molecular adsorption energy, to further saturate itself on the surface. At high oxygen-vacancy concentrations, stronger bindings of adsorbates are found due to a preferred attachment of adsorbates to induced undercoordinated metal sites. The findings propose a potential scheme for greenhouse gas separation based on the surface modification of novel two-dimensional structures.
Collapse
Affiliation(s)
- Thong Nguyen-Minh Le
- Laboratory of Biophysics, Institute for Advanced Study in Technology, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Thong Le Minh Pham
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- School of Engineering and Technology, Duy Tan University Da Nang 550000 Vietnam
| | - Thang Bach Phan
- Center for Innovative Materials and Architectures Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City Ho Chi Minh City 700000 Vietnam
| | - Yoshiyuki Kawazoe
- New Industry Creation Hatchery Center, Tohoku University Sendai 980-8579 Japan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology Kattankulathur 603203 Tamil Nadu India
- School of Physics, Institute of Science, Suranaree University of Technology, 111 University Avenue Nakhon Ratchasima 30000 Thailand
| |
Collapse
|
6
|
Jiang W, Wang Y, Wang Y, Zhou W, Shen J, Liu Q. Enhancement of Methylene Blue Adsorption by Acid-Base Neutralization-Induced Bulging MXene/RGO Composite Foams. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27579-27591. [PMID: 39701974 DOI: 10.1021/acs.langmuir.4c04010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Nanocomposite films made from graphene oxide (GO) and MXene have a dense layered structure due to nanosheet self-stacking, limiting their dye adsorption performance. In this study, acid-base neutralization reactions are used to induce MXene/reduced graphene oxide (RGO) films bulging, which opens the stacked layer structure within the membrane and enhances MB adsorption performance. The effects of the pH, temperature, contact time, and initial concentration of MB on the adsorption performance are further investigated. The results indicate that the adsorption process conforms to the pseudo-second-order kinetic and Freundlich isotherm models and is heat-absorbing and spontaneous, and the MXene/RGO foams have an adsorption capacity of up to 1099.5 mg g-1 for MB. In addition, our study show that the MXene/RGO foams not only have better reusability, but also exhibit better adsorption for other dyes. The efficient MB removal is attributed to the increased specific surface area of the composite foams, increased active sites, strong electrostatic interactions between MB and the composite foams, as well as intercalation adsorption. These findings offer new options for solving dye effluent problems.
Collapse
Affiliation(s)
- Wenshuai Jiang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
- Xinxiang Key Laboratory of Neurobiosensor, Xinxiang, Henan 453003, People's Republic of China
- Henan Engineering Technology Research Center of Neural Sensing and Control, Henan 453003, People's Republic of China
| | - Yaning Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
- Xinxiang Key Laboratory of Neurobiosensor, Xinxiang, Henan 453003, People's Republic of China
| | - Yuxi Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Wen Zhou
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Jiefen Shen
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Qingjun Liu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
- Xinxiang Key Laboratory of Neurobiosensor, Xinxiang, Henan 453003, People's Republic of China
| |
Collapse
|
7
|
Shoaib AGM, Van HT, Tran DT, El Sikaily A, Hassaan MA, El Nemr A. Green algae Ulva lactuca-derived biochar-sulfur improves the adsorption of methylene blue from water. Sci Rep 2024; 14:11583. [PMID: 38773106 PMCID: PMC11109274 DOI: 10.1038/s41598-024-61868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024] Open
Abstract
The present investigation explores the efficacy of green algae Ulva lactuca biochar-sulfur (GABS) modified with H2SO4 and NaHCO3 in adsorbing methylene blue (MB) dye from aqueous solutions. The impact of solution pH, contact duration, GABS dosage, and initial MB dye concentration on the adsorption process are all methodically investigated in this work. To obtain a thorough understanding of the adsorption dynamics, the study makes use of several kinetic models, including pseudo-first order and pseudo-second order models, in addition to isotherm models like Langmuir, Freundlich, Tempkin, and Dubinin-Radushkevich. The findings of the study reveal that the adsorption capacity at equilibrium (qe) reaches 303.78 mg/g for a GABS dose of 0.5 g/L and an initial MB dye concentration of 200 mg/L. Notably, the Langmuir isotherm model consistently fits the experimental data across different GABS doses, suggesting homogeneous adsorption onto a monolayer surface. The potential of GABS as an efficient adsorbent for the extraction of MB dye from aqueous solutions is highlighted by this discovery. The study's use of kinetic and isotherm models provides a robust framework for understanding the intricacies of MB adsorption onto GABS. By elucidating the impact of various variables on the adsorption process, the research contributes valuable insights that can inform the design of efficient wastewater treatment solutions. The comprehensive analysis presented in this study serves as a solid foundation for further research and development in the field of adsorption-based water treatment technologies.
Collapse
Affiliation(s)
- Amany G M Shoaib
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Huu-Tap Van
- Center for Advanced Technology Development, Thai Nguyen University, Tan Thinh Ward, Thai Nguyen City, 25000, Vietnam
| | - Dinh-Trinh Tran
- VNU Key Lab. of Advanced Materials for Green Growth, University of Science, Vietnam National University, No. 19 Le Thanh Tong Street, Hoan Kiem, Hanoi, 120000, Vietnam
| | - Amany El Sikaily
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Mohamed A Hassaan
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Ahmed El Nemr
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt.
| |
Collapse
|
8
|
Massoumılari Ş, Velioǧlu S. Can MXene be the Effective Nanomaterial Family for the Membrane and Adsorption Technologies to Reach a Sustainable Green World? ACS OMEGA 2023; 8:29859-29909. [PMID: 37636908 PMCID: PMC10448662 DOI: 10.1021/acsomega.3c01182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/29/2023] [Indexed: 08/29/2023]
Abstract
Environmental pollution has intensified and accelerated due to a steady increase in the number of industries, and exploring methods to remove hazardous contaminants, which can be typically divided into inorganic and organic compounds, have become inevitable. Therefore, the development of efficacious technology for the separation processes is of paramount importance to ensure the environmental remediation. Membrane and adsorption technologies garnered attention, especially with the use of novel and high performing nanomaterials, which provide a target-specific solution. Specifically, widespread use of MXene nanomaterials in membrane and adsorption technologies has emerged due to their intriguing characteristics, combined with outstanding separation performance. In this review, we demonstrated the intrinsic properties of the MXene family for several separation applications, namely, gas separation, solvent dehydration, dye removal, separation of oil-in-water emulsions, heavy metal ion removal, removal of radionuclides, desalination, and other prominent separation applications. We highlighted the recent advancements used to tune separation potential of the MXene family such as the manipulation of surface chemistry, delamination or intercalation methods, and fabrication of composite or nanocomposite materials. Moreover, we focused on the aspects of stability, fouling, regenerability, and swelling, which deserve special attention when the MXene family is implemented in membrane and adsorption-based separation applications.
Collapse
Affiliation(s)
- Şirin Massoumılari
- Institute
of Nanotechnology, Gebze Technical University, Gebze 41400, Kocaeli, Turkey
| | - Sadiye Velioǧlu
- Institute
of Nanotechnology, Gebze Technical University, Gebze 41400, Kocaeli, Turkey
- Nanotechnology
Research and Application Center, Gebze Technical
University, Gebze 41400, Kocaeli, Turkey
| |
Collapse
|
9
|
Tawalbeh M, Mohammed S, Al-Othman A, Yusuf M, Mofijur M, Kamyab H. MXenes and MXene-based materials for removal of pharmaceutical compounds from wastewater: Critical review. ENVIRONMENTAL RESEARCH 2023; 228:115919. [PMID: 37072081 DOI: 10.1016/j.envres.2023.115919] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023]
Abstract
The rapid increase in the global population and its ever-rising standards of living are imposing a huge burden on global resources. Apart from the rising energy needs, the demand for freshwater is correspondingly increasing. A population of around 3.8 billion people will face water scarcity by 2030, as per the reports of the World Water Council. This may be due to global climate change and the deficiency in the treatment of wastewater. Conventional wastewater treatment technologies fail to completely remove several emerging contaminants, especially those containing pharmaceutical compounds. Hence, leading to an increase in the concentration of harmful chemicals in the human food chain and the proliferation of several diseases. MXenes are transition metal carbide/nitride ceramics that primarily structure the leading 2D material group. MXenes act as novel nanomaterials for wastewater treatment due to their high surface area, excellent adsorption properties, and unique physicochemical properties, such as high electrical conductivity and hydrophilicity. MXenes are highly hydrophilic and covered with active functional groups (i.e., hydroxyl, oxygen, fluorine, etc.), which makes them efficient adsorbents for a wide range of species and promising candidates for environmental remediation and water treatment. This work concludes that the scaling up process of MXene-based materials for water treatment is currently of high cost. The up-to-date applications are still limited because MXenes are currently produced mainly in the laboratory with limited yield. It is recommended to direct research efforts towards lower synthesis cost procedures coupled with the use of more environmentally friendly materials to avoid secondary contamination.
Collapse
Affiliation(s)
- Muhammad Tawalbeh
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| | - Shima Mohammed
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Amani Al-Othman
- Department of Chemical and Biological Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Mohammad Yusuf
- Institute of Hydrocarbon Recovery (IHR), Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia.
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| |
Collapse
|
10
|
Wang C, Ye J, Liang L, Cui X, Kong L, Li N, Cheng Z, Peng W, Yan B, Chen G. Application of MXene-based materials in Fenton-like systems for organic wastewater treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160539. [PMID: 36464059 DOI: 10.1016/j.scitotenv.2022.160539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Recently, Fenton-like systems have been widely explored and applied for the removal of organic matter from wastewater. Two-dimensional (2D) MXene-based materials exhibit excellent adsorption and catalysis capacity for organic pollutants removal, which has been reported widely. However, there is no summary on the application of MXene-based materials in Fenton-like systems for organic matter removal. In this review, four types of MXene-based materials were introduced, including 2D MXene, MXene/Metal complex, MXene/Metal oxide complex, and MXene/3D carbon material complex. In addition, the Fenton-like system usually consists of adsorption and degradation processes. The oxidation process might contain hydrogen peroxide (H2O2) or persulfate (PS) oxidants. This review summarizes the performance and mechanisms of organic pollutants adsorption and oxidants activation by MXene-based materials systematically. Finally, the existing problems and future research directions of MXene-based materials are proposed in Fenton-like wastewater treatment systems.
Collapse
Affiliation(s)
- Chuanbin Wang
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China
| | - Jingya Ye
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China
| | - Lan Liang
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China
| | - Xiaoqiang Cui
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China
| | - Lingchao Kong
- School of Environmental Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Ning Li
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China; Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, PR China.
| | - Zhanjun Cheng
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China
| | - Wenchao Peng
- Department of Chemical Engineering, Tianjin University, Tianjin 300350, PR China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, PR China; School of Science, Tibet University, Lhasa 850012, PR China.
| |
Collapse
|
11
|
Xia Q, Fan Y, Li S, Zhou A, Shinde N, Mane RS. MXene-based chemical gas sensors: Recent developments and challenges. DIAMOND AND RELATED MATERIALS 2023; 131:109557. [PMID: 36415485 PMCID: PMC9671876 DOI: 10.1016/j.diamond.2022.109557] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 06/01/2023]
Abstract
The long-running Covid-19 pandemic has forced researchers across the globe to develop novel sensors and sensor materials for detecting minute quantities of biogenic viruses with high accuracy in a short period. In this context, MXene galleries comprising carbon/nitride two-dimensional nanolayered materials have emerged as excellent host materials in chemical gas sensors owing to their multiple advantages, including high surface area, high electrical conductivity, good thermal/chemical conductivity and chemical stability, composition diversity, and layer-spacing tunability; furthermore, they are popular in clinical, medical, food production, and chemical industries. This review summarizes recent advances in the synthesis, structure, and gas-sensing properties of MXene materials. Current opportunities and future challenges for obtaining MXene-based chemical gas sensors with high sensitivity, selectivity, response/recovery time, and chemical durability are addressed. This review provides a rational and in-depth understanding of the relationship between the gas-sensing properties of MXenes and structure/components, which will promote the further development of two-dimensional MXene-based gas sensors for technical device fabrication and industrial processing applications.
Collapse
Affiliation(s)
- Qixun Xia
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Yulong Fan
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Shiwen Li
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Aiguo Zhou
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Nanasaheb Shinde
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, 37 Nakdong-daero, Saha-gu, Busan 49315, Republic of Korea
| | - Rajaram S Mane
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| |
Collapse
|
12
|
Ahmaruzzaman M. MXenes and MXene-supported nanocomposites: a novel materials for aqueous environmental remediation. RSC Adv 2022; 12:34766-34789. [PMID: 36540274 PMCID: PMC9723541 DOI: 10.1039/d2ra05530a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/22/2022] [Indexed: 08/29/2023] Open
Abstract
Water contamination has become a significant issue on a global scale. Adsorption is a cost-effective way to treat water and wastewater compared to other techniques such as the Advanced Oxidation Processes (AOPs), photocatalytic degradation, membrane filtration etc. Numerous research experts are continuously developing inexpensive substances for the adsorptive removal of organic contaminants from wastewater. A fresh and intriguing area of inquiry has emerged as a result of the development of MXenes. This article aims to provide a preliminary understanding of MXenes from synthesis, structure, and characterization to the scope of further research. The applications of MXenes as a new generation adsorbent for remediation of various kinds of organic pollutants and heavy metals from wastewater are also summarized. MXenes with altered surfaces may make effective adsorbents for wastewater treatment. Lastly, the mechanism of adsorption of organic contaminants and heavy metals on MXenes is also discussed for a better understanding of the readers.
Collapse
Affiliation(s)
- Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| |
Collapse
|
13
|
Murali G, Reddy Modigunta JK, Park YH, Lee JH, Rawal J, Lee SY, In I, Park SJ. A Review on MXene Synthesis, Stability, and Photocatalytic Applications. ACS NANO 2022; 16:13370-13429. [PMID: 36094932 DOI: 10.1021/acsnano.2c04750] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photocatalytic water splitting, CO2 reduction, and pollutant degradation have emerged as promising strategies to remedy the existing environmental and energy crises. However, grafting of expensive and less abundant noble-metal cocatalysts on photocatalyst materials is a mandatory practice to achieve enhanced photocatalytic performance owing to the ability of the cocatalysts to extract electrons efficiently from the photocatalyst and enable rapid/enhanced catalytic reaction. Hence, developing highly efficient, inexpensive, and noble-metal-free cocatalysts composed of earth-abundant elements is considered as a noteworthy step toward considering photocatalysis as a more economical strategy. Recently, MXenes (two-dimensional (2D) transition-metal carbides, nitrides, and carbonitrides) have shown huge potential as alternatives for noble-metal cocatalysts. MXenes have several excellent properties, including atomically thin 2D morphology, metallic electrical conductivity, hydrophilic surface, and high specific surface area. In addition, they exhibit Gibbs free energy of intermediate H atom adsorption as close to zero and less than that of a commercial Pt-based cocatalyst, a Fermi level position above the H2 generation potential, and an excellent ability to capture and activate CO2 molecules. Therefore, there is a growing interest in MXene-based photocatalyst materials for various photocatalytic events. In this review, we focus on the recent advances in the synthesis of MXenes with 2D and 0D morphologies, the stability of MXenes, and MXene-based photocatalysts for H2 evolution, CO2 reduction, and pollutant degradation. The existing challenges and the possible future directions to enhance the photocatalytic performance of MXene-based photocatalysts are also discussed.
Collapse
Affiliation(s)
- G Murali
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Jeevan Kumar Reddy Modigunta
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Young Ho Park
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Jong-Hoon Lee
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Jishu Rawal
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Insik In
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
14
|
He Y, Deng Z, Wang YJ, Zhao Y, Chen L. Polysaccharide/Ti3C2Tx MXene adhesive hydrogels with self-healing ability for multifunctional and sensitive sensors. Carbohydr Polym 2022; 291:119572. [DOI: 10.1016/j.carbpol.2022.119572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/19/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
|
15
|
Wang Z, Huang Z, Wang H, Li W, Wang B, Xu J, Xu T, Zang J, Kong D, Li X, Yang HY, Wang Y. 3D-Printed Sodiophilic V 2CT x/rGO-CNT MXene Microgrid Aerogel for Stable Na Metal Anode with High Areal Capacity. ACS NANO 2022; 16:9105-9116. [PMID: 35666854 DOI: 10.1021/acsnano.2c01186] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Featuring a high theoretical capacity, low cost, and abundant resources, sodium metal has emerged as an ideal anode material for sodium ion batteries. However, the real feasibility of sodium metal anodes is still hampered by the uncontrolled sodium dendrite problems. Herein, an artificial three-dimensional (3D) hierarchical porous sodiophilic V2CTx/rGO-CNT microgrid aerogel is fabricated by a direct-ink writing 3D printing technology and further adopted as the matrix of Na metal to deliver a Na@V2CTx/rGO-CNT sodium metal anode. Upon cycling, the V2CTx/rGO-CNT electrode can yield a superior cycling life of more than 3000 h (2 mA cm-2, 10 mAh cm-2) with an average Coulombic efficiency of 99.54%. More attractively, it can even sustain a stable operation over 900 h at 5 mA cm-2 with an ultrahigh areal capacity of 50 mAh cm-2. In situ and ex situ characterizations and density functional theory simulation analyses prove that V2CTx with abundant sodiophilic functional groups can effectively guide the sodium metal nucleation and uniform deposition, thus enabling a dendrite-free morphology. Moreover, a full cell pairing a Na@V2CTx/rGO-CNT anode with a Na3V2(PO4)3@C-rGO cathode can deliver a high reversible capacity of 86.27 mAh g-1 after 400 cycles at 100 mA g-1. This work not only clarifies the superior Na deposition chemistry on the sodiophilic V2CTx/rGO-CNT microgrid aerogel electrode but also offers an approach for fabricating advanced Na metal anodes via a 3D printing method.
Collapse
Affiliation(s)
- Zixuan Wang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Zhenxin Huang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Hui Wang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, People's Republic of China
| | - Weidong Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Bingyan Wang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Junmin Xu
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Tingting Xu
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Jinhao Zang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Dezhi Kong
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Xinjian Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Ye Wang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| |
Collapse
|
16
|
Velusamy K, Chellam P, Kumar PS, Venkatachalam J, Periyasamy S, Saravanan R. Functionalization of MXene-based nanomaterials for the treatment of micropollutants in aquatic system: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:119034. [PMID: 35196563 DOI: 10.1016/j.envpol.2022.119034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The increased industrialization and urbanization generate a larger quantity of effluent that is discharged into the environment regularly. Based on the effluent composition produced from various industries, the number of hazardous substances such as heavy metals, hydrocarbons, volatile organic compounds, organic chemicals, microorganisms introduced into the aquatic systems vary. The conventional wastewater treatment systems do not meet the effluent standards before discharge and require a different treatment system before reuse. Adsorption is an eco-friendly technique that uses selective adsorbents to remove hazardous pollutants even at microscale levels. MXene, a 2-Dimensional nanomaterial with resplendent properties like conductivity, hydrophilicity, stability, and functionalized surface characteristics, is found as a potential candidate for pollutant removal systems. This review discusses the fabrication, characterization, and application of MXene based nanoparticles to remove many pollutants in water treatment systems. The improvement in surface properties and adsorption capacity of MXene based NPs, when modified using different modification agents, has also been discussed. Their feasibility in terms of economic and environmental aspects has been evaluated to understand their scope for practical application in large-scale industries. The challenges towards the synthesis and toxicity's importance have been discussed, with the appropriate recommendations.
Collapse
Affiliation(s)
- Karthik Velusamy
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, Tamilnadu, India
| | | | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | | | - Selvakumar Periyasamy
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama, 1888, Ethiopia
| | - R Saravanan
- Department of Mechanical Engineering, Universidad de Tarapacá, Arica, Chile
| |
Collapse
|
17
|
Highly efficient methylene blue removal by TMAOH delaminated Ti3C2Tx MXene suspension and the mechanistic aspect. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Sheth Y, Dharaskar S, Chaudhary V, Khalid M, Walvekar R. Prospects of titanium carbide-based MXene in heavy metal ion and radionuclide adsorption for wastewater remediation: A review. CHEMOSPHERE 2022; 293:133563. [PMID: 35007610 DOI: 10.1016/j.chemosphere.2022.133563] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 05/09/2023]
Abstract
Contamination of water sources with various organic and inorganic non-biodegradable pollutants is becoming a growing concern due to industrialization, urbanization, and the inefficiency of traditional wastewater treatment processes. Transition Metal Carbides/Nitrides (MXenes) are emerging as advanced nanomaterials of choice for treating contaminated water owing to their excellent conductivity, mechanical flexibility, high specific surface area, scalable production, rich surface functionalities, and layered morphology. MXenes have demonstrated enhanced ability to adsorb various organic and inorganic contaminants depending upon their surface terminal groups (-OH, -F, and -O) and interlayer spacing. Titanium carbide (Ti3C2Tx) is most researched to date due to its ease of processing and stability. Ti3C2Tx has shown excellent performance in absorbing heavy metal ions and radioactive heavy metals. This review summarizes state-of-the-art Ti3C2Tx synthesis, including selective etching techniques, optimization of the desired adsorption features (controlling surface functional groups, intercalation, sonication, and functionalization), and regeneration and adsorption mechanism to remove contaminants. Furthermore, the review also compares the adsorption performance of Ti3C2Tx with other commercial adsorbents (including chitosan, cellulose, biomass, and zeolites). Ti3C2Tx has been found to have an adsorption efficiency of more than 90% in most studies due to its layered structure, which makes the functional groups easily accessible, unique and novel compared to other conventional nanomaterials and adsorbents. The challenges, potential solutions, and prospects associated with the commercial development of Ti3C2Tx as adsorbents are also discussed. The review establishes a framework for future wastewater treatment research using MXenes to address the global problem of water scarcity.
Collapse
Affiliation(s)
- Yashvi Sheth
- Nano-Research Group, Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar Gujarat, India, 382426
| | - Swapnil Dharaskar
- Nano-Research Group, Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar Gujarat, India, 382426.
| | - Vishal Chaudhary
- Research Cell and Department of Physics, Bhagini Nivedita College, University of Delhi, Delhi, India
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia; Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Rashmi Walvekar
- Department of Chemical Engineering, School of New Energy and Chemical Engineering Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang, 43900, Selangor, Malaysia
| |
Collapse
|
19
|
Wang Y, Yue Y, Cheng F, Cheng Y, Ge B, Liu N, Gao Y. Ti 3C 2T x MXene-Based Flexible Piezoresistive Physical Sensors. ACS NANO 2022; 16:1734-1758. [PMID: 35148056 DOI: 10.1021/acsnano.1c09925] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
MXenes have received increasing attention due to their two-dimensional layered structure, high conductivity, hydrophilicity, and large specific surface area. Because of these distinctive advantages, MXenes are considered as very competitive pressure-sensitive materials in applications of flexible piezoresistive sensors. This work reviews the preparation methods, basic properties, and assembly methods of MXenes and their recent developments in piezoresistive sensor applications. The recent developments of MXene-based flexible piezoresistive sensors can be categorized into one-dimensional fibrous, two-dimensional planar, and three-dimensional sensors according to their various structures. The trends of multifunctional integration of MXene-based pressure sensors are also summarized. Finally, we end this review by describing the opportunities and challenges for MXene-based pressure sensors and the great prospects of MXenes in the field of pressure sensor applications.
Collapse
Affiliation(s)
- Yongxin Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China
| | - Yang Yue
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China
| | - Feng Cheng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China
| | - Yongfa Cheng
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074, P.R. China
| | - Binghui Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China
| | - Nishuang Liu
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074, P.R. China
| | - Yihua Gao
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074, P.R. China
| |
Collapse
|
20
|
Decorating MXene with tiny ZIF-8 nanoparticles: An effective approach to construct composites for water pollutant removal. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
How the Carbonization Time of Sugarcane Biomass Affects the Microstructure of Biochar and the Adsorption Process? SUSTAINABILITY 2022. [DOI: 10.3390/su14031571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biochars (BCs) are very versatile adsorbents, mainly, in the effectiveness of adsorption of organic and inorganic compounds in aqueous solutions. Here, the sugarcane biomass (SCB) was used to produce biochar at different carbonization times: 1, 2, 3, 4, and 5 h, denominated as BC1, BC2, BC3, BC4, and BC5, respectively. The superficial reactivity was studied with adsorption equilibrium experiments and kinetics models; Methylene Blue (MB) was used as adsorbate at different pH values, concentrations, and temperatures. In summary, the carbonization time provides the increase of superficial area, with exception of BC4, which decreased. Equilibrium studies showed inflection points and fluctuations with different initial dye concentration and temperature; SCB showed the best adsorption capacity compared to the BCs at the three temperatures tested, varying with the increase of MB concentration, suggesting the dependence of these two main factors on the adsorption process. The proposed adsorption mechanism suggests the major influence of Coulomb interactions, H-bonding, and π-interactions on the adsorption of MB onto adsorbents, evidencing that the adsorption is led by physical adsorption. Therefore, the results led to the use of the SCB without carbonization at 200 °C, saving energy and more adsorbent mass, considering that the carbonization influences weight loss. This study has provided insights of the use of SCB in MB dye adsorption as a low-cost and eco-friendly adsorbent.
Collapse
|
22
|
Europium(III) removal from aqueous solution using citric acid modified alkalized Mxene as an adsorbent. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-021-08154-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Rethinasabapathy M, Bhaskaran G, Park B, Shin JY, Kim WS, Ryu J, Huh YS. Iron oxide (Fe 3O 4)-laden titanium carbide (Ti 3C 2T x) MXene stacks for the efficient sequestration of cationic dyes from aqueous solution. CHEMOSPHERE 2022; 286:131679. [PMID: 34375833 DOI: 10.1016/j.chemosphere.2021.131679] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
We prepared two-dimensional (2D) stack-structured magnetic iron oxide (Fe3O4) nanoparticle anchored titanium carbide (Ti3C2Tx) MXene material (Ti3C2Tx/Fe3O4). It was used as a potential adsorbent to remove carcinogenic cationic dyes, such as methylene blue (MB) and rhodamine B (Rh B), from aqueous solutions. Ti3C2Tx/Fe3O4 exhibited maximum adsorption capacities of 153 and 86 mg g-1 for MB and Rh B dyes, respectively. Batch adsorption experimental data fits the Langmuir model well, revealing monolayer adsorption of MB and Rh B onto the adsorption sites of Ti3C2Tx/Fe3O4. Additionally, Ti3C2Tx/Fe3O4 showed rapid MB/Rh B adsorption kinetics and attained equilibrium within 45 min. Moreover, Ti3C2Tx/Fe3O4 demonstrated recyclability over four cycles with high stability due to the presence of magnetic Fe3O4 nanoparticles. Furthermore, it exhibited remarkable selectivities of 91% and 88% in the presence of co-existing cationic and anionic dyes, respectively. Given the extraordinary adsorption capacities, Ti3C2Tx/Fe3O4 may be a promising material for the effective removal of cationic dyes from aqueous media.
Collapse
Affiliation(s)
- Muruganantham Rethinasabapathy
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - Gokul Bhaskaran
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - Bumjun Park
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - Jin-Yong Shin
- Chungcheong Division Reliability Center, Korea Confomity Laboratories, Yuseong-gu, Daejeon, 34027, Republic of Korea
| | - Woo-Sik Kim
- Department of Chemical Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea.
| | - Jungho Ryu
- Geologic Environment Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon, 34132, Republic of Korea.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea.
| |
Collapse
|
24
|
Jiang S, Yan L, Wang R, Li G, Rao P, Ju M, Jian L, Guo X, Che L. Recyclable nitrogen-doped biochar via low-temperature pyrolysis for enhanced lead(II) removal. CHEMOSPHERE 2022; 286:131666. [PMID: 34320439 DOI: 10.1016/j.chemosphere.2021.131666] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Facile and low-cost preparation are essential in the conversation of agricultural waste into biochar. In this work, nitrogen-doped biochar (NBC-350-0.1) was prepared by thermal decomposition of urea (urea/biochar = 0.1:1 mass ratio) at a low temperature of 350 °C. NBC-350-0.1 showed good performance for Pb(II) removal with the maximum adsorption capacity of 130.87 mg g-1 at 25 °C, which was five times that of pristine biochar (BC). Adsorption kinetics, isotherms and thermodynamics studies indicated that the adsorption of Pb(II) by NBC-350-0.1 or BC was the homogeneous monolayer adsorption with chemical action as the rate-limiting step, and was accompanied by spontaneous endothermic. Further analysis showed that the removal of Pb(II) on NBC-350-0.1 and BC depended on the complexation with unsaturated carbon bonds and ion exchange with Ca(II). Moreover, graphitic- and pyridinic-N in NBC-350-0.1 exerted a key part in the adsorption of Pb(II). NBC-350-0.1 regenerated by NaOH exhibited excellent recycling performance keeping the original removal efficiency at 84% after five cycles. In addition, this N doping method is suitable for improving the performance of coffee grounds, sawdust, and bagasse biochar. These results would provide an idea for obtaining recyclable N-doped biochar to treat the Pb(II) polluted wastewater.
Collapse
Affiliation(s)
- Siyu Jiang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, PR China
| | - Lili Yan
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, PR China; Innovation Centre for Environment and Resources, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, 201620, PR China.
| | - Runkai Wang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, PR China
| | - Guanghui Li
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, PR China; Innovation Centre for Environment and Resources, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, 201620, PR China
| | - Pinhua Rao
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, PR China
| | - Mengcan Ju
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, PR China
| | - Ling Jian
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, PR China
| | - Xin Guo
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, PR China
| | - Lei Che
- Zhejiang Eco Environmental Technology Co., Ltd, Huzhou, 313000, PR China
| |
Collapse
|
25
|
Hao C, Li G, Wang G, Chen W, Wang S. Preparation of acrylic acid modified alkalized MXene adsorbent and study on its dye adsorption performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127730] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Pogorielov M, Smyrnova K, Kyrylenko S, Gogotsi O, Zahorodna V, Pogrebnjak A. MXenes-A New Class of Two-Dimensional Materials: Structure, Properties and Potential Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3412. [PMID: 34947759 PMCID: PMC8706983 DOI: 10.3390/nano11123412] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022]
Abstract
A new class of two-dimensional nanomaterials, MXenes, which are carbides/nitrides/carbonitrides of transition and refractory metals, has been critically analyzed. Since the synthesis of the first family member in 2011 by Yury Gogotsi and colleagues, MXenes have quickly become attractive for a variety of research fields due to their exceptional properties. Despite the fact that this new family of 2D materials was discovered only about ten years ago, the number of scientific publications related to MXene almost doubles every year. Thus, in 2021 alone, more than 2000 papers are expected to be published, which indicates the relevance and prospects of MXenes. The current paper critically analyzes the structural features, properties, and methods of synthesis of MXenes based on recent available research data. We demonstrate the recent trends of MXene applications in various fields, such as environmental pollution removal and water desalination, energy storage and harvesting, quantum dots, sensors, electrodes, and optical devices. We focus on the most important medical applications: photo-thermal cancer therapy, diagnostics, and antibacterial treatment. The first results on obtaining and studying the structure of high-entropy MXenes are also presented.
Collapse
Affiliation(s)
- Maksym Pogorielov
- Department of Nanoelectronics and Surface Modification, Faculty of Electronics and Information Technology, Sumy State University, 40007 Sumy, Ukraine; (K.S.); (S.K.); (A.P.)
- Institute of Atomic Physics and Spectroscopy, University of Latvia, LV 1586 Riga, Latvia
| | - Kateryna Smyrnova
- Department of Nanoelectronics and Surface Modification, Faculty of Electronics and Information Technology, Sumy State University, 40007 Sumy, Ukraine; (K.S.); (S.K.); (A.P.)
| | - Sergiy Kyrylenko
- Department of Nanoelectronics and Surface Modification, Faculty of Electronics and Information Technology, Sumy State University, 40007 Sumy, Ukraine; (K.S.); (S.K.); (A.P.)
| | - Oleksiy Gogotsi
- Materials Research Centre, 03142 Kyiv, Ukraine; (O.G.); (V.Z.)
- CARBON-UKRAINE Ltd., 03680 Kyiv, Ukraine
| | - Veronika Zahorodna
- Materials Research Centre, 03142 Kyiv, Ukraine; (O.G.); (V.Z.)
- CARBON-UKRAINE Ltd., 03680 Kyiv, Ukraine
| | - Alexander Pogrebnjak
- Department of Nanoelectronics and Surface Modification, Faculty of Electronics and Information Technology, Sumy State University, 40007 Sumy, Ukraine; (K.S.); (S.K.); (A.P.)
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| |
Collapse
|
27
|
Song S, Jiang X, Shen H, Wu W, Shi Q, Wan M, Zhang J, Mo H, Shen J. MXene (Ti 3C 2) Based Pesticide Delivery System for Sustained Release and Enhanced Pest Control. ACS APPLIED BIO MATERIALS 2021; 4:6912-6923. [PMID: 35006991 DOI: 10.1021/acsabm.1c00607] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A multifunctional nanomaterials based pesticide delivery system provides a powerful strategy for the efficient utilization of pesticides. We present here the application of a 2D MXene (Ti3C2) nanomaterial for pesticide delivery and plant protection. Avermectin (AV), a hydrophobic and unstable insecticide, was chosen as the model pesticide. In our study, AV@Ti3C2 was formed by fast adsorption of AV on Ti3C2, with a maximum loading capacity of 81.44%. Compared with hydrophobic AV, AV@Ti3C2 exhibited significantly improved water solubility, which is beneficial for ensuring the bioactivity of pesticide. The AV@Ti3C2 nanoformulation showed pH responsive slow-release behavior, overcoming the burst-release of conventional AV formulations. Besides, AV@Ti3C2 possessed excellent photostability under UV irradiation, which prolonged the persistent period of AV. Therefore, AV@Ti3C2 performed sustaining and enhanced antipest activity, according to the bioactivity assay. Furthermore, AV@Ti3C2 showed satisfactory biosafety, with no negative effect to the germination and growth of maize. Our current research provides a potential candidate, AV@Ti3C2, for pest control, and also broadens the application of 2D MXene materials in plant protection and sustainable agriculture.
Collapse
Affiliation(s)
- Saijie Song
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xuefeng Jiang
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - He Shen
- CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Wenneng Wu
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang 550005, P. R. China
| | - Qiaoqiao Shi
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, P. R. China
| | - Minghui Wan
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jun Zhang
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Hong Mo
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jian Shen
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
28
|
Chen F, Wang R, Chen H, Lu H. Preparation of polyacrylamide/MXene hydrogels as highly-efficient electro-adsorbents for methylene blue removal. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1921207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Fanglin Chen
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, People’s Republic of China
| | - Riyuan Wang
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, People’s Republic of China
| | - Haoran Chen
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, People’s Republic of China
| | - Hongdian Lu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, People’s Republic of China
| |
Collapse
|
29
|
Sun Y, Li Y. Potential environmental applications of MXenes: A critical review. CHEMOSPHERE 2021; 271:129578. [PMID: 33450420 DOI: 10.1016/j.chemosphere.2021.129578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Various environmental pollutants (e.g., air, water and solid pollutants) are discharged into environments with the rapid development of industrializations, which is presently at the forefront of global attention. The high efficient removal of these environmental pollutants is of important concern due to their potential threat to human health and eco-diversity. Advanced nanomaterials may play an important role in the elimination of pollutants from environmental media. MXenes as the new intriguing class of graphene-like 2D transition metal carbides and/or carbonitrides have been widely used in energy storage, environmental remediation benefitting from exceptional structural properties such as highly active sites, high chemical stability, hydrophilicity, large interlayer spacing, huge specific surface area, superior sorption-reduction capacity. However, the comprehensive investigation concerning the removal of various environmental pollutants on MXenes is yet not available up to date. In this review, we summarized the synthesis and properties of MXenes to demonstrate the key roles in ameliorating their adsorption performance; then the recent advances and achievements in environmental application of MXenes on the removal of gases, organics, heavy metals and radionuclides were comprehensively reviewed in details; Finally, the formidable challenges and further perspectives regarding utilizing MXene in environmental remediation were proposed. Hopefully, this review can provide the useful information for environmental scientists and material engineers on designing versatile MXenes in actual environmental applications.
Collapse
Affiliation(s)
- Yubing Sun
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| | - Ying Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| |
Collapse
|
30
|
Yao C, Zhang W, Xu L, Cheng M, Su Y, Xue J, Liu J, Hou S. A facile synthesis of porous MXene-based freestanding film and its spectacular electrosorption performance for organic dyes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118365] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Yaqub A, Shafiq Q, Khan AR, Husnain SM, Shahzad F. Recent advances in the adsorptive remediation of wastewater using two-dimensional transition metal carbides (MXenes): a review. NEW J CHEM 2021. [DOI: 10.1039/d1nj00772f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
MXenes, since their discovery in 2011, have garnered significant research attention for a variety of applications due to their exciting physico-chemical properties.
Collapse
Affiliation(s)
- Azra Yaqub
- Chemistry Division
- Directorate of Science
- Pakistan Institute of Nuclear Science and Technology (PINSTECH)
- Islamabad
- Pakistan
| | - Qamar Shafiq
- National Center for Nanotechnology
- Department of Metallurgy and Materials Engineering
- Pakistan Institute of Engineering and Applied Sciences (PIEAS)
- Islamabad 45650
- Pakistan
| | - Abdul Rehman Khan
- Materials Division
- Directorate of Technology
- Pakistan Institute of Nuclear Science and Technology (PINSTECH)
- Islamabad
- Pakistan
| | - Syed M. Husnain
- Chemistry Division
- Directorate of Science
- Pakistan Institute of Nuclear Science and Technology (PINSTECH)
- Islamabad
- Pakistan
| | - Faisal Shahzad
- National Center for Nanotechnology
- Department of Metallurgy and Materials Engineering
- Pakistan Institute of Engineering and Applied Sciences (PIEAS)
- Islamabad 45650
- Pakistan
| |
Collapse
|