1
|
Zhao J, Liu QB, Ma S, Wu W, Wang H, Gao P, Xiong L, Li X, Li X, Wang X. Designing Chiral Organometallic Nanosheets with Room-Temperature Multiferroicity and Topological Nodes. NANO LETTERS 2025; 25:1480-1486. [PMID: 39808696 DOI: 10.1021/acs.nanolett.4c05408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Two-dimensional (2D) room-temperature chiral multiferroic and magnetic topological materials are essential for constructing functional spintronic devices, yet their number is extremely limited. Here, by using the chiral and polar HPP (HPP = 4-(3-hydroxypyridin-4-yl)pyridin-3-ol) as an organic linker and transition metals (TM = Cr, Mo, W) as nodes, we predict a class of 2D TM(HPP)2 organometallic nanosheets that incorporate homochirality, room-temperature magnetism, ferroelectricity, and topological nodes. The homochirality is introduced by chiral HPP linkers, and the change in structural chirality induces a topological phase transition of Weyl phonons. The room-temperature magnetism arises from the strong d-p spin coupling between TM cations and HPP doublet anions. The ferroelectricity is attributed to the breaking of spatial inversion symmetry in the lattice structure. Additionally, by adjusting the type of TMs, these nanosheets show rich and tunable band structures. Notably, all predicted materials are topologically nontrivial, featuring a quadratic nodal point around the Fermi level.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Qing-Bo Liu
- School of Optical Information and Energy Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Shuaiqi Ma
- School of Basic Sciences for Aviation, Naval Aviation University, Yantai 264001, China
| | - Wenfeng Wu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Hanyu Wang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Pengfei Gao
- School of Intelligent Manufacturing, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lun Xiong
- School of Optical Information and Energy Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Xiangyang Li
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Xingxing Li
- Department of Chemical Physics & Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xianlong Wang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, Anhui 230031, China
| |
Collapse
|
2
|
Feng Q, Li X, Li X. A Route to Two-Dimensional Room-Temperature Organometallic Multiferroics: The Marriage of d-p Spin Coupling and Structural Inversion Symmetry Breaking. NANO LETTERS 2024; 24:3462-3469. [PMID: 38451166 DOI: 10.1021/acs.nanolett.4c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Two-dimensional (2D) room-temperature multiferroic materials are highly desirable but still very limited. Herein, we propose a potential strategy to obtain such materials in 2D metal-organic frameworks (MOFs) by utilizing the d-p direct spin coupling in conjunction with center-symmetry-breaking six-membered heterocyclic rings. Based on this strategy, a screening of 128 2D MOFs results in the identification of three multiferroics, that is, Cr(1,2-oxazine)2, Cr(1,2,4-triazine)2, and Cr(1,2,3,4-trazine)2, simultaneously exhibiting room-temperature ferrimagnetism and ferroelectricity/antiferroelectricity. The room-temperature ferrimagnetic order (306-495 K) in these MOFs originates from the strong d-p direct magnetic exchange interaction between Cr cations and ligand anions. Specifically, Cr(1,2-oxazine)2 exhibits ferroelectric behavior with an out-of-plane polarization of 4.24 pC/m, whereas the other two manifest antiferroelectric characteristics. Notably, all three materials present suitable polarization switching barriers (0.18-0.31 eV). Furthermore, these MOFs are all bipolar magnetic semiconductors with moderate band gaps, in which the spin direction of carriers can be manipulated by electrical gating.
Collapse
Affiliation(s)
- Qingqing Feng
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei Institute for Public Safety Research, Tsinghua University, Hefei, Anhui 320601, China
| | - Xiangyang Li
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xingxing Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
3
|
Wang Z, Lou H, Yan X, Liu Y, Yang G. 2D antiferromagnetic semiconducting FeCN with interesting properties. Phys Chem Chem Phys 2023; 25:32416-32420. [PMID: 38010895 DOI: 10.1039/d3cp04820a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Two-dimensional magnetic materials have demonstrated favorable properties (e.g., large spin polarization and net magnetization) for the development of next-generation spintronic devices. The discovery of such materials and insight into their magnetic coupling mechanism has become a research focus. Here, on the basis of first-principles structural search calculations, we have identified a fresh FeCN monolayer consisting of edge-sharing Fe triangle sublattices and FeC3N2 rings, which integrates antiferromagnetism, semiconductivity, and planarity. Interestingly, it possesses a large magnetic anisotropy energy (MAE) of 614 μeV per Fe atom, a narrow band gap (Eg) of 0.47 eV, a large magnetic moment of 3.15 μB, and a proper Néel temperature (TN) of 97 K. The direct exchange between the nearest-neighbor Fe atoms in the triangle sublattice is mainly responsible for the AFM ordering. Its high structural stability, stemming from the collective contribution of covalent C-C and C-N bonds, ionic Fe-N bonds, and metallic Fe-Fe bonds, provides a strong feasibility for experimental synthesis.
Collapse
Affiliation(s)
- Zhicui Wang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Huan Lou
- Department of Physics, College of Science, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Xu Yan
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Yong Liu
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Guochun Yang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
4
|
De S, Mouchaham G, Liu F, Affram M, Abeykoon B, Guillou N, Jeanneau E, Grenèche JM, Khrouz L, Martineau-Corcos C, Boudjema L, Salles F, Salcedo-Abraira P, Valente G, Souto M, Fateeva A, Devic T. Expanding the horizons of porphyrin metal-organic frameworks via catecholate coordination: exploring structural diversity, material stability and redox properties. JOURNAL OF MATERIALS CHEMISTRY. A 2023; 11:25465-25483. [PMID: 38037625 PMCID: PMC10683559 DOI: 10.1039/d3ta04490d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023]
Abstract
Porphyrin based Metal-Organic Frameworks (MOFs) have generated high interest because of their unique combination of light absorption, electron transfer and guest adsorption/desorption properties. In this study, we expand the range of available MOF materials by focusing on the seldom studied porphyrin ligand H10TcatPP, functionalized with tetracatecholate coordinating groups. A systematic evaluation of its reactivity with M(iii) cations (Al, Fe, and In) led to the synthesis and isolation of three novel MOF phases. Through a comprehensive characterization approach involving single crystal and powder synchrotron X-ray diffraction (XRD) in combination with the local information gained from spectroscopic techniques, we elucidated the structural features of the solids, which are all based on different inorganic secondary building units (SBUs). All the synthesized MOFs demonstrate an accessible porosity, with one of them presenting mesopores and the highest reported surface area to date for a porphyrin catecholate MOF (>2000 m2 g-1). Eventually, the redox activity of these solids was investigated in a half-cell vs. Li with the aim of evaluating their potential as electrode positive materials for electrochemical energy storage. One of the solids displayed reversibility during cycling at a rather high potential (∼3.4 V vs. Li+/Li), confirming the interest of redox active phenolate ligands for applications involving electron transfer. Our findings expand the library of porphyrin-based MOFs and highlight the potential of phenolate ligands for advancing the field of MOFs for energy storage materials.
Collapse
Affiliation(s)
- Siddhartha De
- Laboratoire des Multimatériaux et Interfaces, Université Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5615 F-69622 Villeurbanne France
| | - Georges Mouchaham
- Institut Lavoisier de Versailles, UMR 8180 CNRS UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | - Fangbing Liu
- Laboratoire des Multimatériaux et Interfaces, Université Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5615 F-69622 Villeurbanne France
| | - Maame Affram
- Institut Lavoisier de Versailles, UMR 8180 CNRS UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | - Brian Abeykoon
- Laboratoire des Multimatériaux et Interfaces, Université Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5615 F-69622 Villeurbanne France
| | - Nathalie Guillou
- Institut Lavoisier de Versailles, UMR 8180 CNRS UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | - Erwann Jeanneau
- Laboratoire des Multimatériaux et Interfaces, Université Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5615 F-69622 Villeurbanne France
| | - Jean-Marc Grenèche
- Institut des Molécules et Matériaux du Mans, IMMM UMR CNRS 6283, Le Mans Université Le Mans Cedex 9 F-72085 France
| | - Lhoussain Khrouz
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182 F-69342 Lyon France
| | - Charlotte Martineau-Corcos
- Institut Lavoisier de Versailles, UMR 8180 CNRS UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | | | | | - Pablo Salcedo-Abraira
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN F-44000 Nantes France
| | - Gonçalo Valente
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro Aveiro 3810-393 Portugal
| | - Manuel Souto
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro Aveiro 3810-393 Portugal
| | - Alexandra Fateeva
- Laboratoire des Multimatériaux et Interfaces, Université Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5615 F-69622 Villeurbanne France
| | - Thomas Devic
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN F-44000 Nantes France
| |
Collapse
|
5
|
Li J, Li X, Yang J. Chemically Controlled Reversible Magnetic Phase Transition in Two-Dimensional Organometallic Lattices. NANO LETTERS 2023; 23:9126-9132. [PMID: 37781926 DOI: 10.1021/acs.nanolett.3c03060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Developing an efficient method to reversibly control materials' spin order is urgently needed but challenging in spintronics. Though various physical field control methods have been advancing, the chemical control of spin is little exploited. Here, we propose a chemical means for such spin manipulation, i.e., utilizing the well-known lactim-lactam tautomerization to reversibly modulate the magnetic phase transition in two-dimensional (2D) organometallic lattices. The proposal is verified by theoretically designing several 2D organometallic frameworks with antiferromagnetic to ferrimagnetic spin order transformation modulated by lactim-lactam tautomerization on organic linkers. The transition originates from the change in spin states of organic linkers (from singlet to doublet) via tautomerization. Such a transition further switches materials' electronic structures from normal semiconductors with zero spin polarization to bipolar magnetic semiconductors with valence and conduction band edges 100% spin polarized in opposite spin channels. Moreover, the magnitude of magnetic anisotropy energy also enhances by 5- to 9-fold.
Collapse
Affiliation(s)
- Junyao Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xingxing Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Jinlong Yang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
6
|
Yan X, Su X, Chen J, Jin C, Chen L. Two-Dimensional Metal-Organic Frameworks Towards Spintronics. Angew Chem Int Ed Engl 2023; 62:e202305408. [PMID: 37258996 DOI: 10.1002/anie.202305408] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023]
Abstract
The intrinsic properties of predesignable topologies and tunable electronic structures, coupled with the increase of electrical conductivity, make two-dimensional metal-organic frameworks (2D MOFs) highly prospective candidates for next-generation electronic/spintronic devices. In this Minireview, we present an outline of the design principles of 2D MOF-based spintronics materials. Then, we highlight the spin-transport properties of 2D MOF-based organic spin valves (OSVs) as a notable achievement in the progress of 2D MOFs for spintronics devices. After that, we discuss the potential for spin manipulation in 2D MOFs with bipolar magnetic semiconductor (BMS) properties as a promising field for future research. Finally, we provide a brief summary and outlook to encourage the development of novel 2D MOFs for spintronics applications.
Collapse
Affiliation(s)
- Xiaoli Yan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xi Su
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jian Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Chao Jin
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Processing Technology, Department of Applied Physics, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Long Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
7
|
Man P, Huang L, Zhao J, Ly TH. Ferroic Phases in Two-Dimensional Materials. Chem Rev 2023; 123:10990-11046. [PMID: 37672768 DOI: 10.1021/acs.chemrev.3c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Two-dimensional (2D) ferroics, namely ferroelectric, ferromagnetic, and ferroelastic materials, are attracting rising interest due to their fascinating physical properties and promising functional applications. A variety of 2D ferroic phases, as well as 2D multiferroics and the novel 2D ferrovalleytronics/ferrotoroidics, have been recently predicted by theory, even down to the single atomic layers. Meanwhile, some of them have already been experimentally verified. In addition to the intrinsic 2D ferroics, appropriate stacking, doping, and defects can also artificially regulate the ferroic phases of 2D materials. Correspondingly, ferroic ordering in 2D materials exhibits enormous potential for future high density memory devices, energy conversion devices, and sensing devices, among other applications. In this paper, the recent research progresses on 2D ferroic phases are comprehensively reviewed, with emphasis on chemistry and structural origin of the ferroic properties. In addition, the promising applications of the 2D ferroics for information storage, optoelectronics, and sensing are also briefly discussed. Finally, we envisioned a few possible pathways for the future 2D ferroics research and development. This comprehensive overview on the 2D ferroic phases can provide an atlas for this field and facilitate further exploration of the intriguing new materials and physical phenomena, which will generate tremendous impact on future functional materials and devices.
Collapse
Affiliation(s)
- Ping Man
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Lingli Huang
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Jiong Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Thuc Hue Ly
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
| |
Collapse
|
8
|
Li X, Liu QB, Tang Y, Li W, Ding N, Liu Z, Fu HH, Dong S, Li X, Yang J. Quintuple Function Integration in Two-Dimensional Cr(II) Five-Membered Heterocyclic Metal Organic Frameworks via Tuning Ligand Spin and Lattice Symmetry. J Am Chem Soc 2023; 145:7869-7878. [PMID: 36926870 DOI: 10.1021/jacs.2c12780] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Two-dimensional (2D) semiconductors (SCs) integrated with two or more functions are the cornerstone for constructing multifunctional nanodevices but remain largely limited. Here, by tuning the spin state of organic linkers and the symmetry/topology of crystal lattices, we predict a class of unprecedented multifunctional SCs in 2D Cr(II) five-membered heterocyclic metal organic frameworks that simultaneously possess auxetic effect, room-temperature ferrimagnetism, chiral ferroelectricity (FE), electrically reversible spin polarization, and topological nodal lines/points. Taking 2D Cr(TDZ)2 (TDZ = 1.2.5-thiadiazole) as an exemplification, the auxetic effect is produced by the antitetra-chiral lattice structure. The high temperature ferrimagnetism originates from the strong d-p direct magnetic exchange interaction between Cr cations and TDZ doublet radical anions. Meanwhile, the clockwise-counterclockwise alignment of TDZ's dipoles results in unique 2D chiral FE with atomic-scale vortex-antivortex states. 2D Cr(TDZ)2 is an intrinsic bipolar magnetic SC where half-metallic conduction with switchable spin-polarization direction can be induced by applying a gate voltage. In addition, the symmetry of the little group C4 of the lattice structure endows 2D Cr(TDZ)2 with topological nodal lines and a quadratic nodal point in the Brillouin zone near the Fermi level.
Collapse
Affiliation(s)
- Xiangyang Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.,School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Qing-Bo Liu
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430073, China.,School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yongsen Tang
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Wei Li
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ning Ding
- School of Physics, Southeast University, Nanjing 211189, China
| | - Zhao Liu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hua-Hua Fu
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuai Dong
- School of Physics, Southeast University, Nanjing 211189, China
| | - Xingxing Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.,Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China.,Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinlong Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.,Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China.,Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
9
|
Li J, Li X, Yang J. A review of bipolar magnetic semiconductors from theoretical aspects. FUNDAMENTAL RESEARCH 2022; 2:511-521. [PMID: 38934007 PMCID: PMC11197773 DOI: 10.1016/j.fmre.2022.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 11/19/2022] Open
Abstract
Spintronics, which employs electrons' spin degree of freedom in data storage and transmission, acts as a promising candidate for next-generation information technology owing to its improved processing speed and reduced power consumption. To seek and design materials with highly spin polarized carriers and find an efficient way to control the spin polarization direction of carriers are critical and urgent to spintronics applications. In this aspect, the bipolar magnetic semiconductor (BMS) serves as an ideal solution since it can generate currents with 100% spin polarization, and the direction of spin polarization is easily tunable by an external gate voltage. Up to now, there have been lots of BMSs predicted by first-principles calculations, however, most of them are extrinsically induced by chemical or physical modifications, and a generalized scheme for designing BMS materials is still lacking. This paper is aimed to briefly review the existing BMS materials designed by theoretical simulations, analyze the main obstacles to experimental realization, and put forward suggestions for future development.
Collapse
Affiliation(s)
- Junyao Li
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xingxing Li
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Jinlong Yang
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Lee S, Alsalman H, Jiang W, Low T, Kwon YK. Transition Metal-Free Half-Metallicity in Two-Dimensional Gallium Nitride with a Quasi-Flat Band. J Phys Chem Lett 2021; 12:12150-12156. [PMID: 34914401 DOI: 10.1021/acs.jpclett.1c03966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional half-metallicity without a transition metal is an attractive attribute for spintronics applications. On the basis of first-principles calculation, we revealed that a two-dimensional gallium nitride (2D-GaN), which was recently synthesized between graphene and SiC or wurtzite GaN substrate, exhibits half-metallicity due to its half-filled quasi-flat band. We found that graphene plays a crucial role in stabilizing a local octahedral structure, whose unusually high density of states due to a flat band leads to a spontaneous phase transition to its half-metallic phase from normal metal. It was also found that its half-metallicity is strongly correlated to the in-plane lattice constants and thus subjected to substrate modification. To investigate the magnetic property, we simplified its magnetic structure with a two-dimensional Heisenberg model and performed Monte Carlo simulation. Our simulation estimated its Curie temperature (TC) to be ∼165 K under a weak external magnetic field, suggesting that transition metal-free 2D-GaN exhibiting p orbital-based half-metallicity can be utilized in future spintronics.
Collapse
Affiliation(s)
- Seungjun Lee
- Department of Physics, Kyung Hee University, Seoul 02447, Korea
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hussain Alsalman
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Wei Jiang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Tony Low
- Department of Physics, Kyung Hee University, Seoul 02447, Korea
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Young-Kyun Kwon
- Department of Physics, Kyung Hee University, Seoul 02447, Korea
- Department of Information Display and Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
11
|
Abstract
Due to unprecedented application prospects such as high-density and low-power multistate storage, spintronics and nanoelectronics, two-dimensional (2D) multiferroics, coupled with at least two ferroic orders, have gotten a lot of interest in recent years. Multiple functions can be achieved in 2D multiferroics via coupling phenomena such as magnetoelectricity, piezoelectricity, and magnetoelasticity, which offers technical support for the creation of multifunctional devices. The research progress of 2D ferromagnetic-ferroelectric multiferroic materials, ferroelectric-ferroelastic multiferroic materials, and ferromagnetic-ferroelastic materials in recent years is reviewed in this paper. The categorization of 2D multiferroics is explored in terms of the multiple sources of ferroelectricity. The top-down approaches and the bottom-up methods used to fabricate 2D multiferroics materials are introduced. Finally, the authors outline potential research prospects and application scenarios for 2D multiferroic materials.
Collapse
Affiliation(s)
- Yunye Gao
- School of Engineering, College of Engineering and Computer Science, the Australian National University, Canberra, Australian Capital Territory 2601, Australia.
| | - Mingyuan Gao
- School of Engineering, College of Engineering and Computer Science, the Australian National University, Canberra, Australian Capital Territory 2601, Australia.
- College of Engineering and Technology, Southwest University, Chongqing 400716, China
| | - Yuerui Lu
- School of Engineering, College of Engineering and Computer Science, the Australian National University, Canberra, Australian Capital Territory 2601, Australia.
| |
Collapse
|
12
|
Li X, Lv H, Liu X, Jin T, Wu X, Li X, Yang J. Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1160-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Yu S, Wang Y, Wang S, Zhang H, Huang B, Dai Y, Wei W. Robust Intrinsic Multiferroicity in a FeHfSe 3 Layer. J Phys Chem Lett 2021; 12:8882-8888. [PMID: 34498870 DOI: 10.1021/acs.jpclett.1c02615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As a consequence of the mutually exclusive origins of ferroelectricity and magnetism, multiferroic materials with electromagnetic coupling are rare. In this work, stable two-dimensional FeHfSe3 with experimental accessibility is however demonstrated to harbor robust electromagnetic coupling. FeHfSe3 illustrates spontaneous in-plane polarization of 1.29 × 10-10 C/m, and the energy barrier of 116.54 meV ensures easy switching and a high Curie temperature. In addition, semiconducting FeHfSe3 possesses a stable antiferromagnetic ground state with a Néel temperature of approximately 300 K. In the case of applying strain, ferroelectricity and magnetism coexist stably, and uniaxial tensile strain can effectively enhance the ferroelectricity.
Collapse
Affiliation(s)
- Shiqiang Yu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yuanyuan Wang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Shuhua Wang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Haona Zhang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Baibiao Huang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Ying Dai
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Wei Wei
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
14
|
Miao N, Sun Z. Computational design of two‐dimensional magnetic materials. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Naihua Miao
- School of Materials Science and Engineering Beihang University Beijing China
- Center for Integrated Computational Materials Engineering International Research Institute for Multidisciplinary Science, Beihang University Beijing China
| | - Zhimei Sun
- School of Materials Science and Engineering Beihang University Beijing China
- Center for Integrated Computational Materials Engineering International Research Institute for Multidisciplinary Science, Beihang University Beijing China
| |
Collapse
|
15
|
Gao H, Zhao L, Liu K, Lu ZY. Polymerization-Induced Reassembly of Gemini Molecules toward Generating Porous Two-Dimensional Polymers. J Phys Chem Lett 2021; 12:2340-2347. [PMID: 33656345 DOI: 10.1021/acs.jpclett.1c00243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In situ polymerization of preorganized amphiphilic monomers on various substrates provides a flexible synthetic route to construct high-quality two-dimensional polymers (2DPs) with designed functionalities. However, the detailed polymerization kinetics of these monomers in 2D confinement and their impact on the structural features of 2DPs have not been efficiently explored. Here, using dissipative particle dynamics (DPD) simulations, we unveil the similarity of the polymerization kinetics of the amphiphilic Gemini molecules in both a 2D-confined space and solution and emphasize the key role of the initiator concentration in modifying the morphology of 2DPs. More interestingly, introducing a spacer group into the Gemini monomer facilitates the formation of porous 2DPs. The size and periodic arrangement of pores in these 2DPs could be directly controlled by the Gemini molecular geometries and polymerization kinetics. The insights based on our DPD simulations provide valuable guidelines for the rational design and synthesis of 2DPs from a wider range of amphiphilic molecules.
Collapse
Affiliation(s)
- Huimin Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- School of Mathematics, Jilin University, Changchun 130012, China
| | - Li Zhao
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
16
|
Wang M, Dong R, Feng X. Two-dimensional conjugated metal–organic frameworks (2D c-MOFs): chemistry and function for MOFtronics. Chem Soc Rev 2021; 50:2764-2793. [DOI: 10.1039/d0cs01160f] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Two-dimensional conjugated MOFs are emerging for multifunctional electronic devices that brings us “MOFtronics”, such as (opto)electronics, spintronics, energy devices.
Collapse
Affiliation(s)
- Mingchao Wang
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry
- Technische Universität Dresden
- 01062 Dresden
- Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry
- Technische Universität Dresden
- 01062 Dresden
- Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry
- Technische Universität Dresden
- 01062 Dresden
- Germany
| |
Collapse
|
17
|
Zhang L, Tang C, Zhang C, Du A. First-principles screening of novel ferroelectric MXene phases with a large piezoelectric response and unusual auxeticity. NANOSCALE 2020; 12:21291-21298. [PMID: 33063799 DOI: 10.1039/d0nr06609e] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Out-of-plane ferroelectricity in the two-dimensional (2D) regime shows great promise for applications in next-generation electronic devices but has been rarely reported. Herein, by using high-throughput search and density functional theory (DFT) calculations, three types of ferroelectric MXene phases (type-I: Nb2CS2 and Ta2CS2; type-II: Sc2CO2 and Y2CO2; and type-III: Sc2CS2 and Y2CS2) are for the first time predicted to be achievable by surface functionalization of 2D MXenes. The identified 2D ferroelectric MXenes not only demonstrate remarkable and reversible spontaneous electric polarization along both the out-of-plane and in-plane orientations but also exhibit giant out-of-plane and in-plane piezoelectric response to the external strain. More excitingly, the type-III ferroelectric MXenes possess rare out-of-plane auxeticity that can be triggered by the tensile strain along both the zig-zag and the arm-chair directions. The intriguing ferroelectricity, large piezoelectric response, and auxeticity render the ferroelectric MXenes versatile candidates for nanoscale electronic and mechanic devices.
Collapse
Affiliation(s)
- Lei Zhang
- School of Chemistry and Physics, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia. and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia
| | - Cheng Tang
- School of Chemistry and Physics, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia. and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia
| | - Chunmei Zhang
- Shanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an 710069, P. R. China
| | - Aijun Du
- School of Chemistry and Physics, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia. and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia
| |
Collapse
|