1
|
Wang H, Wang Y, Zheng C, Wang P, Hu Z, Gao HY. Lying or Standing of Thiophene on a Surface Determines the Reaction Difference. J Phys Chem Lett 2024; 15:10535-10543. [PMID: 39401088 DOI: 10.1021/acs.jpclett.4c02125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Adsorption configurations of molecules on a surface play an important role in the on-surface reaction. In the on-surface synthesis reaction, most of the molecules prefer the lying adsorption configuration to maximize the interaction between the molecule and substrate. In this work, we report an on-surface study of 2,3,4,5-tetrabromothiophene by scanning tunneling microscopy, density functional theory, and X-ray photoelectron spectroscopy. Due to different interactions between thiophene and metal surfaces, lying or standing configurations of 2,3,4,5-tetrabromothiophene can be selected by the choice of metal substrates. Moreover, a catalytic role of the metal substrate in the molecular reaction with lying and standing adsorption configurations is demonstrated at the molecular level. This work broadens the understanding of thiophene's configurations in surface reactions and the product diversity driven by adsorption configurations. It also offers a guiding framework for synthesizing multifunctional materials by thiophene derivatives.
Collapse
Affiliation(s)
- Hongchao Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, People's Republic of China
- Tianjin Key Laboratory of Applied Catalysis Science and Engineering, Tianjin University, Tianjin 300350, People's Republic of China
| | - Youjie Wang
- School of Physics, Nankai University, Tianjin 300071, People's Republic of China
| | - Caiyan Zheng
- School of Physics, Nankai University, Tianjin 300071, People's Republic of China
| | - Peichao Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, People's Republic of China
- Tianjin Key Laboratory of Applied Catalysis Science and Engineering, Tianjin University, Tianjin 300350, People's Republic of China
| | - Zhenpeng Hu
- School of Physics, Nankai University, Tianjin 300071, People's Republic of China
| | - Hong-Ying Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, People's Republic of China
- Tianjin Key Laboratory of Applied Catalysis Science and Engineering, Tianjin University, Tianjin 300350, People's Republic of China
| |
Collapse
|
2
|
Lisiecki J, Szabelski P. Structural Quantification of the Surface-Confined Metal-Organic Precursors Simulated with the Lattice Monte Carlo Method. Molecules 2023; 28:molecules28104253. [PMID: 37241994 DOI: 10.3390/molecules28104253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The diversity of surface-confined metal-organic precursor structures, which recently have been observed experimentally, poses a question of how the individual properties of a molecular building block determine those of the resulting superstructure. To answer this question, we use the Monte Carlo simulation technique to model the self-assembly of metal-organic precursors that precede the covalent polymerization of halogenated PAH isomers. For this purpose, a few representative examples of low-dimensional constructs were studied, and their basic structural features were quantified using such descriptors as the orientational order parameter, radial distribution function, and one- and two-dimensional structure factors. The obtained results demonstrated that the morphology of the precursor (and thus the subsequent polymer) could be effectively tuned by a suitable choice of molecular parameters, including size, shape, and intramolecular distribution of halogen substituents. Moreover, our theoretical investigations showed the effect of the main structural features of the precursors on the related indirect characteristics of these constructs. The results reported herein can be helpful in the custom designing and characterization of low-dimensional polymers with adjustable properties.
Collapse
Affiliation(s)
- Jakub Lisiecki
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M.C. Skłodowskiej 3, 20-031 Lublin, Poland
| | - Paweł Szabelski
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M.C. Skłodowskiej 3, 20-031 Lublin, Poland
| |
Collapse
|